amazingvince/Not-WizardLM-2-7B
Included is code ripped from fastchat with the expected chat templating.
Also wiz.pdf is a pdf of the github blog showing the apache 2 release. Link to wayback machine included: https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/
example
import dataclasses
from enum import auto, Enum
from typing import List, Tuple, Any
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
sep2: str = None
# Used for gradio server
skip_next: bool = False
conv_id: Any = None
def get_prompt(self):
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system
for role, message in self.messages:
if message:
ret += self.sep + " " + role + ": " + message
else:
ret += self.sep + " " + role + ":"
return ret
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def append_message(self, role, message):
self.messages.append([role, message])
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if i % 2 == 0:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
conv_id=self.conv_id)
def dict(self):
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
"conv_id": self.conv_id,
}
conv = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
roles=("USER", "ASSISTANT"),
messages=[],
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv.append_message(conv.roles[0], "Why would Microsoft take this down?")
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
result = model.generate(**inputs, max_new_tokens=1000)
generated_ids = result[0]
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
print(generated_text)
- Downloads last month
- 575
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.