|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- stanford-dogs |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: google-vit-base-patch16-224-batch32-lr0.0005-standford-dogs |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: stanford-dogs |
|
type: stanford-dogs |
|
config: default |
|
split: full |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8838678328474247 |
|
- name: F1 |
|
type: f1 |
|
value: 0.880922271280839 |
|
- name: Precision |
|
type: precision |
|
value: 0.8888253617157671 |
|
- name: Recall |
|
type: recall |
|
value: 0.8813659659148954 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# google-vit-base-patch16-224-batch32-lr0.0005-standford-dogs |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the stanford-dogs dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4466 |
|
- Accuracy: 0.8839 |
|
- F1: 0.8809 |
|
- Precision: 0.8888 |
|
- Recall: 0.8814 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 4.758 | 0.0777 | 10 | 4.5706 | 0.0481 | 0.0344 | 0.0390 | 0.0483 | |
|
| 4.4856 | 0.1553 | 20 | 4.2407 | 0.1421 | 0.1018 | 0.1190 | 0.1396 | |
|
| 4.2422 | 0.2330 | 30 | 3.9118 | 0.2655 | 0.2120 | 0.2525 | 0.2553 | |
|
| 3.972 | 0.3107 | 40 | 3.5875 | 0.4096 | 0.3445 | 0.3996 | 0.3933 | |
|
| 3.6632 | 0.3883 | 50 | 3.2750 | 0.5299 | 0.4683 | 0.5338 | 0.5129 | |
|
| 3.4266 | 0.4660 | 60 | 2.9911 | 0.6028 | 0.5536 | 0.6617 | 0.5870 | |
|
| 3.1207 | 0.5437 | 70 | 2.7127 | 0.6638 | 0.6227 | 0.7159 | 0.6496 | |
|
| 2.9402 | 0.6214 | 80 | 2.4853 | 0.7043 | 0.6716 | 0.7387 | 0.6923 | |
|
| 2.7683 | 0.6990 | 90 | 2.2667 | 0.7376 | 0.7092 | 0.7675 | 0.7277 | |
|
| 2.5556 | 0.7767 | 100 | 2.0710 | 0.7631 | 0.7422 | 0.7843 | 0.7551 | |
|
| 2.3936 | 0.8544 | 110 | 1.8898 | 0.7772 | 0.7610 | 0.8076 | 0.7705 | |
|
| 2.245 | 0.9320 | 120 | 1.7340 | 0.7954 | 0.7807 | 0.8138 | 0.7898 | |
|
| 2.0889 | 1.0097 | 130 | 1.6027 | 0.8073 | 0.7970 | 0.8314 | 0.8024 | |
|
| 1.951 | 1.0874 | 140 | 1.4715 | 0.8197 | 0.8094 | 0.8361 | 0.8132 | |
|
| 1.8414 | 1.1650 | 150 | 1.3790 | 0.8209 | 0.8104 | 0.8389 | 0.8151 | |
|
| 1.7247 | 1.2427 | 160 | 1.3237 | 0.8146 | 0.8034 | 0.8338 | 0.8085 | |
|
| 1.7338 | 1.3204 | 170 | 1.2107 | 0.8336 | 0.8251 | 0.8463 | 0.8284 | |
|
| 1.5688 | 1.3981 | 180 | 1.1370 | 0.8401 | 0.8314 | 0.8531 | 0.8354 | |
|
| 1.5471 | 1.4757 | 190 | 1.0684 | 0.8455 | 0.8367 | 0.8558 | 0.8398 | |
|
| 1.461 | 1.5534 | 200 | 1.0200 | 0.8477 | 0.8384 | 0.8571 | 0.8430 | |
|
| 1.4736 | 1.6311 | 210 | 0.9612 | 0.8540 | 0.8493 | 0.8621 | 0.8509 | |
|
| 1.4062 | 1.7087 | 220 | 0.9269 | 0.8528 | 0.8476 | 0.8639 | 0.8495 | |
|
| 1.2888 | 1.7864 | 230 | 0.8914 | 0.8516 | 0.8456 | 0.8626 | 0.8478 | |
|
| 1.3353 | 1.8641 | 240 | 0.8484 | 0.8601 | 0.8538 | 0.8684 | 0.8555 | |
|
| 1.2751 | 1.9417 | 250 | 0.8210 | 0.8586 | 0.8520 | 0.8643 | 0.8538 | |
|
| 1.2378 | 2.0194 | 260 | 0.7924 | 0.8567 | 0.8510 | 0.8641 | 0.8522 | |
|
| 1.1686 | 2.0971 | 270 | 0.7683 | 0.8579 | 0.8529 | 0.8670 | 0.8543 | |
|
| 1.1625 | 2.1748 | 280 | 0.7477 | 0.8567 | 0.8522 | 0.8658 | 0.8532 | |
|
| 1.1883 | 2.2524 | 290 | 0.7312 | 0.8576 | 0.8534 | 0.8674 | 0.8541 | |
|
| 1.1551 | 2.3301 | 300 | 0.7052 | 0.8654 | 0.8606 | 0.8702 | 0.8618 | |
|
| 1.1259 | 2.4078 | 310 | 0.6901 | 0.8627 | 0.8580 | 0.8720 | 0.8597 | |
|
| 1.073 | 2.4854 | 320 | 0.6793 | 0.8654 | 0.8600 | 0.8722 | 0.8612 | |
|
| 1.0587 | 2.5631 | 330 | 0.6604 | 0.8700 | 0.8646 | 0.8753 | 0.8660 | |
|
| 1.0506 | 2.6408 | 340 | 0.6470 | 0.8690 | 0.8638 | 0.8714 | 0.8652 | |
|
| 1.0397 | 2.7184 | 350 | 0.6369 | 0.8664 | 0.8606 | 0.8711 | 0.8627 | |
|
| 1.0363 | 2.7961 | 360 | 0.6373 | 0.8664 | 0.8610 | 0.8797 | 0.8623 | |
|
| 1.0408 | 2.8738 | 370 | 0.6141 | 0.8700 | 0.8637 | 0.8755 | 0.8655 | |
|
| 1.0087 | 2.9515 | 380 | 0.6105 | 0.8707 | 0.8657 | 0.8740 | 0.8675 | |
|
| 1.0021 | 3.0291 | 390 | 0.5978 | 0.8744 | 0.8708 | 0.8771 | 0.8717 | |
|
| 0.894 | 3.1068 | 400 | 0.5970 | 0.8671 | 0.8632 | 0.8733 | 0.8637 | |
|
| 0.9363 | 3.1845 | 410 | 0.5860 | 0.8683 | 0.8640 | 0.8754 | 0.8653 | |
|
| 0.9678 | 3.2621 | 420 | 0.5760 | 0.8712 | 0.8677 | 0.8764 | 0.8684 | |
|
| 0.9378 | 3.3398 | 430 | 0.5677 | 0.8686 | 0.8645 | 0.8734 | 0.8653 | |
|
| 0.929 | 3.4175 | 440 | 0.5620 | 0.8707 | 0.8659 | 0.8750 | 0.8672 | |
|
| 0.9585 | 3.4951 | 450 | 0.5610 | 0.8654 | 0.8612 | 0.8691 | 0.8625 | |
|
| 0.8432 | 3.5728 | 460 | 0.5557 | 0.8690 | 0.8638 | 0.8715 | 0.8665 | |
|
| 0.9423 | 3.6505 | 470 | 0.5421 | 0.8715 | 0.8663 | 0.8737 | 0.8684 | |
|
| 0.944 | 3.7282 | 480 | 0.5419 | 0.8703 | 0.8656 | 0.8728 | 0.8671 | |
|
| 0.8477 | 3.8058 | 490 | 0.5297 | 0.8766 | 0.8727 | 0.8799 | 0.8737 | |
|
| 0.8933 | 3.8835 | 500 | 0.5263 | 0.8739 | 0.8707 | 0.8790 | 0.8716 | |
|
| 0.881 | 3.9612 | 510 | 0.5197 | 0.8768 | 0.8739 | 0.8817 | 0.8746 | |
|
| 0.8603 | 4.0388 | 520 | 0.5196 | 0.8778 | 0.8740 | 0.8832 | 0.8746 | |
|
| 0.8045 | 4.1165 | 530 | 0.5214 | 0.8759 | 0.8723 | 0.8822 | 0.8725 | |
|
| 0.8101 | 4.1942 | 540 | 0.5163 | 0.8746 | 0.8713 | 0.8806 | 0.8725 | |
|
| 0.8016 | 4.2718 | 550 | 0.5149 | 0.8766 | 0.8729 | 0.8813 | 0.8735 | |
|
| 0.8403 | 4.3495 | 560 | 0.5061 | 0.8724 | 0.8689 | 0.8767 | 0.8699 | |
|
| 0.8216 | 4.4272 | 570 | 0.5034 | 0.8739 | 0.8699 | 0.8798 | 0.8708 | |
|
| 0.8491 | 4.5049 | 580 | 0.5004 | 0.8768 | 0.8730 | 0.8828 | 0.8740 | |
|
| 0.7727 | 4.5825 | 590 | 0.4990 | 0.8766 | 0.8722 | 0.8810 | 0.8736 | |
|
| 0.8475 | 4.6602 | 600 | 0.4941 | 0.8766 | 0.8724 | 0.8807 | 0.8736 | |
|
| 0.854 | 4.7379 | 610 | 0.4867 | 0.8824 | 0.8793 | 0.8867 | 0.8801 | |
|
| 0.8226 | 4.8155 | 620 | 0.4900 | 0.8771 | 0.8736 | 0.8824 | 0.8747 | |
|
| 0.7847 | 4.8932 | 630 | 0.4855 | 0.8805 | 0.8773 | 0.8847 | 0.8779 | |
|
| 0.8093 | 4.9709 | 640 | 0.4820 | 0.8805 | 0.8775 | 0.8844 | 0.8777 | |
|
| 0.7667 | 5.0485 | 650 | 0.4837 | 0.8800 | 0.8759 | 0.8827 | 0.8768 | |
|
| 0.7116 | 5.1262 | 660 | 0.4812 | 0.8797 | 0.8765 | 0.8850 | 0.8773 | |
|
| 0.7859 | 5.2039 | 670 | 0.4792 | 0.8812 | 0.8781 | 0.8869 | 0.8790 | |
|
| 0.8108 | 5.2816 | 680 | 0.4772 | 0.8797 | 0.8766 | 0.8862 | 0.8771 | |
|
| 0.7425 | 5.3592 | 690 | 0.4757 | 0.8807 | 0.8774 | 0.8856 | 0.8780 | |
|
| 0.7968 | 5.4369 | 700 | 0.4759 | 0.8802 | 0.8770 | 0.8853 | 0.8774 | |
|
| 0.8087 | 5.5146 | 710 | 0.4702 | 0.8810 | 0.8778 | 0.8851 | 0.8783 | |
|
| 0.7207 | 5.5922 | 720 | 0.4716 | 0.8805 | 0.8771 | 0.8845 | 0.8776 | |
|
| 0.7776 | 5.6699 | 730 | 0.4691 | 0.8790 | 0.8749 | 0.8829 | 0.8760 | |
|
| 0.8075 | 5.7476 | 740 | 0.4658 | 0.8819 | 0.8784 | 0.8858 | 0.8789 | |
|
| 0.7759 | 5.8252 | 750 | 0.4637 | 0.8807 | 0.8771 | 0.8838 | 0.8778 | |
|
| 0.6963 | 5.9029 | 760 | 0.4656 | 0.8795 | 0.8765 | 0.8847 | 0.8769 | |
|
| 0.7245 | 5.9806 | 770 | 0.4644 | 0.8827 | 0.8796 | 0.8872 | 0.8800 | |
|
| 0.692 | 6.0583 | 780 | 0.4602 | 0.8819 | 0.8789 | 0.8861 | 0.8792 | |
|
| 0.6859 | 6.1359 | 790 | 0.4594 | 0.8827 | 0.8797 | 0.8872 | 0.8798 | |
|
| 0.7221 | 6.2136 | 800 | 0.4593 | 0.8814 | 0.8783 | 0.8861 | 0.8788 | |
|
| 0.701 | 6.2913 | 810 | 0.4599 | 0.8807 | 0.8777 | 0.8852 | 0.8778 | |
|
| 0.7151 | 6.3689 | 820 | 0.4564 | 0.8824 | 0.8794 | 0.8869 | 0.8797 | |
|
| 0.7038 | 6.4466 | 830 | 0.4573 | 0.8812 | 0.8780 | 0.8860 | 0.8783 | |
|
| 0.7182 | 6.5243 | 840 | 0.4553 | 0.8824 | 0.8793 | 0.8866 | 0.8795 | |
|
| 0.6964 | 6.6019 | 850 | 0.4535 | 0.8822 | 0.8788 | 0.8861 | 0.8794 | |
|
| 0.6805 | 6.6796 | 860 | 0.4556 | 0.8819 | 0.8789 | 0.8878 | 0.8791 | |
|
| 0.6209 | 6.7573 | 870 | 0.4518 | 0.8836 | 0.8804 | 0.8883 | 0.8810 | |
|
| 0.6665 | 6.8350 | 880 | 0.4524 | 0.8829 | 0.8798 | 0.8881 | 0.8800 | |
|
| 0.7334 | 6.9126 | 890 | 0.4507 | 0.8805 | 0.8776 | 0.8859 | 0.8779 | |
|
| 0.6889 | 6.9903 | 900 | 0.4503 | 0.8822 | 0.8791 | 0.8872 | 0.8796 | |
|
| 0.6854 | 7.0680 | 910 | 0.4488 | 0.8846 | 0.8816 | 0.8887 | 0.8824 | |
|
| 0.6855 | 7.1456 | 920 | 0.4485 | 0.8829 | 0.8800 | 0.8877 | 0.8804 | |
|
| 0.6644 | 7.2233 | 930 | 0.4477 | 0.8846 | 0.8814 | 0.8888 | 0.8822 | |
|
| 0.6556 | 7.3010 | 940 | 0.4469 | 0.8841 | 0.8811 | 0.8887 | 0.8818 | |
|
| 0.7299 | 7.3786 | 950 | 0.4480 | 0.8841 | 0.8813 | 0.8894 | 0.8817 | |
|
| 0.6425 | 7.4563 | 960 | 0.4467 | 0.8829 | 0.8798 | 0.8876 | 0.8805 | |
|
| 0.6582 | 7.5340 | 970 | 0.4470 | 0.8831 | 0.8801 | 0.8879 | 0.8806 | |
|
| 0.7499 | 7.6117 | 980 | 0.4466 | 0.8831 | 0.8801 | 0.8878 | 0.8806 | |
|
| 0.6396 | 7.6893 | 990 | 0.4466 | 0.8839 | 0.8809 | 0.8887 | 0.8813 | |
|
| 0.6864 | 7.7670 | 1000 | 0.4466 | 0.8839 | 0.8809 | 0.8888 | 0.8814 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|