resnet-50-finetuned-barkley

This model is a fine-tuned version of microsoft/resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9221
  • Precision: 0.8780
  • Recall: 0.8618
  • F1: 0.8574
  • Accuracy: 0.8744
  • Top1 Accuracy: 0.8618
  • Error Rate: 0.1256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Top1 Accuracy Error Rate
1.6171 1.0 38 1.6195 0.0663 0.1513 0.0664 0.1738 0.1513 0.8262
1.6149 2.0 76 1.6160 0.2953 0.1579 0.0802 0.1785 0.1579 0.8215
1.6119 3.0 114 1.6112 0.0804 0.1579 0.0834 0.1772 0.1579 0.8228
1.6041 4.0 152 1.6015 0.4161 0.1974 0.1461 0.2155 0.1974 0.7845
1.5945 5.0 190 1.5895 0.4089 0.2895 0.2428 0.3092 0.2895 0.6908
1.5777 6.0 228 1.5710 0.5764 0.4408 0.3944 0.4663 0.4408 0.5337
1.561 7.0 266 1.5490 0.6013 0.4934 0.4516 0.5173 0.5 0.4827
1.536 8.0 304 1.5222 0.6377 0.5132 0.4711 0.5450 0.5132 0.4550
1.5081 9.0 342 1.4912 0.7595 0.5987 0.5869 0.6250 0.5987 0.3750
1.4756 10.0 380 1.4566 0.7579 0.6447 0.6293 0.6683 0.6447 0.3317
1.4387 11.0 418 1.4156 0.7914 0.6776 0.6692 0.6985 0.6776 0.3015
1.3993 12.0 456 1.3737 0.7997 0.6842 0.6732 0.7080 0.6842 0.2920
1.358 13.0 494 1.3288 0.8290 0.7039 0.7048 0.7232 0.7039 0.2768
1.3139 14.0 532 1.2806 0.8277 0.7434 0.7373 0.7592 0.75 0.2408
1.262 15.0 570 1.2345 0.8478 0.7697 0.7664 0.7829 0.7697 0.2171
1.2184 16.0 608 1.1887 0.8323 0.7697 0.7654 0.7818 0.7697 0.2182
1.1803 17.0 646 1.1408 0.8423 0.7763 0.7735 0.7931 0.7763 0.2069
1.1422 18.0 684 1.0966 0.8594 0.8158 0.8100 0.8317 0.8158 0.1683
1.1032 19.0 722 1.0587 0.8431 0.8026 0.7969 0.8145 0.8026 0.1855
1.058 20.0 760 1.0289 0.8610 0.8355 0.8301 0.8487 0.8355 0.1513
1.0252 21.0 798 0.9918 0.8576 0.8421 0.8370 0.8534 0.8421 0.1466
1.002 22.0 836 0.9727 0.8677 0.8487 0.8435 0.8611 0.8487 0.1389
0.9812 23.0 874 0.9465 0.8795 0.8553 0.8497 0.8678 0.8553 0.1322
0.9636 24.0 912 0.9331 0.8820 0.8553 0.8485 0.8699 0.8553 0.1301
0.9591 25.0 950 0.9221 0.8780 0.8618 0.8574 0.8744 0.8618 0.1256
0.948 26.0 988 0.9158 0.8780 0.8618 0.8574 0.8744 0.8684 0.1256
0.9384 27.0 1026 0.9017 0.8685 0.8487 0.8431 0.8601 0.8487 0.1399

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
197
Safetensors
Model size
23.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alyzbane/resnet-50-finetuned-barkley

Finetuned
(146)
this model