alvarobartt's picture
alvarobartt HF staff
Model save
d1e69a3 verified
|
raw
history blame
2.88 kB
metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
  - trl
  - orpo
  - generated_from_trainer
model-index:
  - name: mistral-7b-orpo-alignment-handbook
    results: []

mistral-7b-orpo-alignment-handbook

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8562
  • Rewards/chosen: -0.0394
  • Rewards/rejected: -0.0485
  • Rewards/accuracies: 0.6615
  • Rewards/margins: 0.0091
  • Logps/rejected: -0.9709
  • Logps/chosen: -0.7880
  • Logits/rejected: -2.9507
  • Logits/chosen: -2.9399
  • Nll Loss: 0.8317
  • Log Odds Ratio: -0.6238
  • Log Odds Chosen: 0.3606

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
0.9081 0.95 100 0.8756 -0.0406 -0.0483 0.625 0.0077 -0.9657 -0.8116 -3.0351 -3.0266 0.8517 -0.6438 0.3078
0.8743 1.9 200 0.8544 -0.0391 -0.0474 0.6458 0.0083 -0.9474 -0.7823 -2.9519 -2.9423 0.8308 -0.6319 0.3327
0.7952 2.84 300 0.8562 -0.0394 -0.0485 0.6615 0.0091 -0.9709 -0.7880 -2.9507 -2.9399 0.8317 -0.6238 0.3606

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2