|
--- |
|
language: |
|
- zh |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
model-index: |
|
- name: Whisper Small zh-HK - Alvin |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_11_0 zh-HK |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: zh-HK |
|
split: test |
|
args: zh-HK |
|
metrics: |
|
- name: Normalized CER |
|
type: cer |
|
value: 7.766 |
|
metrics: |
|
- cer |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Large V2 zh-HK - Alvin |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the Common Voice 11.0 dataset. This is trained with PEFT LoRA+BNB INT8 with a Normalized CER of 7.77% |
|
|
|
To use the model, use the following code. It should be able to inference with less than 4GB VRAM (batch size of 1). |
|
``` |
|
from peft import PeftModel, PeftConfig |
|
from transformers import WhisperForConditionalGeneration, Seq2SeqTrainer, WhisperTokenizer, WhisperProcessor |
|
|
|
peft_model_id = "alvanlii/whisper-largev2-cantonese-peft-lora" |
|
peft_config = PeftConfig.from_pretrained(peft_model_id) |
|
model = WhisperForConditionalGeneration.from_pretrained( |
|
peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" |
|
) |
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
|
|
task = "transcribe" |
|
tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, task=task) |
|
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, task=task) |
|
feature_extractor = processor.feature_extractor |
|
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) |
|
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) |
|
|
|
audio = # load audio here |
|
text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"] |
|
``` |
|
|
|
## Training and evaluation data |
|
For training, three datasets were used: |
|
- Common Voice 11 Canto Train Set |
|
- CantoMap: Winterstein, Grégoire, Tang, Carmen and Lai, Regine (2020) "CantoMap: a Hong Kong Cantonese MapTask Corpus", in Proceedings of The 12th Language Resources and Evaluation Conference, Marseille: European Language Resources Association, p. 2899-2906. |
|
- Cantonse-ASR: Yu, Tiezheng, Frieske, Rita, Xu, Peng, Cahyawijaya, Samuel, Yiu, Cheuk Tung, Lovenia, Holy, Dai, Wenliang, Barezi, Elham, Chen, Qifeng, Ma, Xiaojuan, Shi, Bertram, Fung, Pascale (2022) "Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset", 2022. Link: https://arxiv.org/pdf/2201.02419.pdf |
|
|
|
## Training Hyperparameters |
|
- learning_rate: 1e-3 |
|
- train_batch_size: 60 (on 1 3090 GPU) |
|
- eval_batch_size: 10 |
|
- gradient_accumulation_steps: 1 |
|
- total_train_batch_size: 60x1x1=60 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 12000 |
|
- augmentation: SpecAugment |
|
|
|
## Training Results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Normalized CER | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------:| |
|
| 0.8604 | 1.99 | 12000 | 0.2129 | 0.07766 | |