Edit model card

This is a model from blockchainlab test 2.4 - alnrg2arg/blockchainlabs_7B_merged_test2_4.

The project is running to make a small LLM for a on-device purpose.

Overall pipeline for this iteration is

1.Merging to make a base model (7B) 2.Prune the model to reduce the parameter (50% sparcity) 3.For recovery phase of the pruning, the DPO is chosen.

This model which is not pruned is intended to compare with the pruned model.

This is the code and parameters I chose for this model(DPO).

from transformers import TrainingArguments, AutoModelForCausalLM
from trl import DPOTrainer

dpo_trainer = DPOTrainer(
    model = model,
   
    ref_model = None,
    args = TrainingArguments(
        per_device_train_batch_size = 8,
        gradient_accumulation_steps = 8,
        warmup_ratio = 0.1,
        num_train_epochs = 3,
        learning_rate = 5e-6,
        fp16 = not torch.cuda.is_bf16_supported(),
        bf16 = torch.cuda.is_bf16_supported(),
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.0,
        lr_scheduler_type = "linear",
        seed = 42,
        output_dir = "output_DPO",
    ),
    beta = 0.1,
    train_dataset = dataset,
    # eval_dataset = raw_datasets["test"],
    tokenizer = tokenizer,
    max_length = 1024,
    max_prompt_length = 512,
)

The code and parameters are borrowed from https://colab.research.google.com/drive/1SKrKGV-BZoU4kv5q3g0jtE_OhRgPtrrQ?usp=sharing

Downloads last month
2
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alnrg2arg/test3_sft_4bit_dpo

Finetuned
(8)
this model

Dataset used to train alnrg2arg/test3_sft_4bit_dpo