Uploaded model
- Finetuned from model : alnrg2arg/blockchainlabs_7B_merged_test2_4
This is a SFT version of the model from blockchainlab test 2.4 - alnrg2arg/blockchainlabs_7B_merged_test2_4.
The project is running to make a small LLM for a on-device purpose.
Overall pipeline for this iteration is
1.Merging to make a base model (7B) 2.Prune the model to reduce the parameter (50% sparcity) 3.For recovery phase of the pruning, the DPO is chosen.
This model which is not pruned is intended to compare with the pruned model.
DPO consists of two parts : SFT and DPO - Now this model is the intermediate format (SFT) This model can also be compared to the DPO version of the model.
This is the code and parameters I chose for this model(SFT).
from transformers import TrainingArguments
from trl import SFTTrainer
from datasets import load_dataset
from unsloth import FastLanguageModel, FastMistralModel
max_seq_length = 2048 # Supports automatic RoPE Scaling, so choose any number
# Load model
model, tokenizer = FastMistralModel.from_pretrained(
model_name = "alnrg2arg/blockchainlabs_7B_merged_test2_4,
max_seq_length = max_seq_length,
dtype = None, # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True, # Use 4bit quantization to reduce memory usage. Can be False
#device_map = "balanced"
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
model = FastMistralModel.get_peft_model(
model,
r = 16,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Dropout = 0 is currently optimized
bias = "none", # Bias = "none" is currently optimized
use_gradient_checkpointing = True,
random_state = 3407,
max_seq_length = max_seq_length,
)
The code and parameters are borrowed from https://colab.research.google.com/drive/1SKrKGV-BZoU4kv5q3g0jtE_OhRgPtrrQ?usp=sharing
Benchmark scores
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
arc_challenge | 1 | none | 25 | acc | 0.7116 | ± | 0.0132 |
none | 25 | acc_norm | 0.7346 | ± | 0.0129 |
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
hellaswag | 1 | none | 10 | acc | 0.7222 | ± | 0.0045 |
none | 10 | acc_norm | 0.8865 | ± | 0.0032 |
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
truthfulqa_mc2 | 2 | none | 0 | acc | 0.7043 | ± | 0.015 |
Groups | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
mmlu | N/A | none | 0 | acc | 0.6367 | ± | 0.1258 |
- humanities | N/A | none | 5 | acc | 0.5968 | ± | 0.1122 |
- other | N/A | none | 5 | acc | 0.7049 | ± | 0.1123 |
- social_sciences | N/A | none | 5 | acc | 0.7374 | ± | 0.0774 |
- stem | N/A | none | 5 | acc | 0.5309 | ± | 0.1373 |
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
winogrande | 1 | none | 5 | acc | 0.8477 | ± | 0.0101 |
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
gsm8k | 2 | get-answer | 5 | exact_match | 0.7468 | ± | 0.012 |
Average 75.94
- Downloads last month
- 5