CamemBERT: a Tasty French Language Model
Introduction
CamemBERT is a state-of-the-art language model for French based on the RoBERTa model.
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.
For further information or requests, please go to Camembert Website
Pre-trained models
Model | #params | Arch. | Training data |
---|---|---|---|
camembert-base |
110M | Base | OSCAR (138 GB of text) |
camembert/camembert-large |
335M | Large | CCNet (135 GB of text) |
camembert/camembert-base-ccnet |
110M | Base | CCNet (135 GB of text) |
camembert/camembert-base-wikipedia-4gb |
110M | Base | Wikipedia (4 GB of text) |
camembert/camembert-base-oscar-4gb |
110M | Base | Subsample of OSCAR (4 GB of text) |
camembert/camembert-base-ccnet-4gb |
110M | Base | Subsample of CCNet (4 GB of text) |
How to use CamemBERT with HuggingFace
Load CamemBERT and its sub-word tokenizer :
from transformers import CamembertModel, CamembertTokenizer
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-wikipedia-4gb")
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb")
camembert.eval() # disable dropout (or leave in train mode to finetune)
Filling masks using pipeline
from transformers import pipeline
camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-wikipedia-4gb", tokenizer="camembert/camembert-base-wikipedia-4gb")
results = camembert_fill_mask("Le camembert est un fromage de <mask>!")
# results
#[{'sequence': '<s> Le camembert est un fromage de chรจvre!</s>', 'score': 0.4937814474105835, 'token': 19370},
#{'sequence': '<s> Le camembert est un fromage de brebis!</s>', 'score': 0.06255942583084106, 'token': 30616},
#{'sequence': '<s> Le camembert est un fromage de montagne!</s>', 'score': 0.04340197145938873, 'token': 2364},
# {'sequence': '<s> Le camembert est un fromage de Noรซl!</s>', 'score': 0.02823255956172943, 'token': 3236},
#{'sequence': '<s> Le camembert est un fromage de vache!</s>', 'score': 0.021357402205467224, 'token': 12329}]
Extract contextual embedding features from Camembert output
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
# ['โJ', "'", 'aime', 'โle', 'โca', 'member', 't', 'โ!']
# 1-hot encode and add special starting and end tokens
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [5, 221, 10, 10600, 14, 8952, 10540, 75, 1114, 6]
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
# Feed tokens to Camembert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = camembert(encoded_sentence)
# embeddings.detach()
# embeddings.size torch.Size([1, 10, 768])
#tensor([[[-0.0928, 0.0506, -0.0094, ..., -0.2388, 0.1177, -0.1302],
# [ 0.0662, 0.1030, -0.2355, ..., -0.4224, -0.0574, -0.2802],
# [-0.0729, 0.0547, 0.0192, ..., -0.1743, 0.0998, -0.2677],
# ...,
Extract contextual embedding features from all Camembert layers
from transformers import CamembertConfig
# (Need to reload the model with new config)
config = CamembertConfig.from_pretrained("camembert/camembert-base-wikipedia-4gb", output_hidden_states=True)
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb", config=config)
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
all_layer_embeddings[5]
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
#tensor([[[-0.0059, -0.0227, 0.0065, ..., -0.0770, 0.0369, 0.0095],
# [ 0.2838, -0.1531, -0.3642, ..., -0.0027, -0.8502, -0.7914],
# [-0.0073, -0.0338, -0.0011, ..., 0.0533, -0.0250, -0.0061],
# ...,
Authors
CamemBERT was trained and evaluated by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suรกrez*, Yoann Dupont, Laurent Romary, รric Villemonte de la Clergerie, Djamรฉ Seddah and Benoรฎt Sagot.
Citation
If you use our work, please cite:
@inproceedings{martin2020camembert,
title={CamemBERT: a Tasty French Language Model},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
- Downloads last month
- 1,324,398