|
--- |
|
model-index: |
|
- name: llama-3.1-tulu-2-8b-uf-mean-rm |
|
results: [] |
|
datasets: |
|
- allenai/tulu-2.5-preference-data |
|
- allenai/tulu-v2-sft-mixture |
|
language: |
|
- en |
|
base_model: allenai/llama-3.1-tulu-2-8b |
|
license: apache-2.0 |
|
--- |
|
<center> |
|
<img src="https://huggingface.co./datasets/allenai/blog-images/resolve/main/tulu-2.5/tulu_25_banner.png" alt="Tulu 2.5 banner image" width="800px"/> |
|
</center> |
|
|
|
# Model Card for Llama 3.1 Tulu V2 8B RM - UltraFeedback |
|
|
|
Tulu is a series of language models that are trained to act as helpful assistants. |
|
This is a 8B reward model used for PPO training trained on the UltraFeedback dataset. |
|
|
|
For more details, read the paper: |
|
[Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279). |
|
|
|
Note this model is finetuned from Llama 3.1, released under the Meta Llama 3.1 community license, included here under `llama_3_license.txt`. |
|
|
|
|
|
## Performance |
|
|
|
We evaluate the model on [RewardBench](https://github.com/allenai/reward-bench): |
|
|
|
| Model | Score | Chat | Chat Hard | Safety | Reasoning | |
|
|------------------|-------|-------|-----------|--------|-----------| |
|
| **[Llama 3.1 Tulu 2 8b UF RM](https://huggingface.co./allenai/llama-3.1-tulu-2-8b-uf-mean-rm) (this model)** | 73.3 | 98.0 | 59.6 | 60.6 | 74.7 | |
|
| [Llama 3.1 Tulu 2 70b UF RM](https://huggingface.co./allenai/llama-3.1-tulu-2-70b-uf-mean-rm) | 70.2 | 96.4 | 56.4 | 65.8 | 62.3 | |
|
|
|
|
|
## Model description |
|
|
|
- **Model type:** A reward model trained on UltraFeedback, designed to be used in RLHF training. |
|
- **Language(s) (NLP):** English |
|
- **License:** Apache 2.0. |
|
- **Finetuned from model:** [allenai/llama-3.1-tulu-2-8b](https://huggingface.co./allenai/llama-3.1-tulu-2-8b) |
|
|
|
### Model Sources |
|
|
|
- **Repository:** https://github.com/allenai/open-instruct |
|
- **Dataset:** Data used to train this model can be found [here](https://huggingface.co./datasets/allenai/tulu-2.5-preference-data) - specifically the `ultrafeedback_mean_aspects` split. |
|
|
|
|
|
## Input Format |
|
|
|
The model is trained to use the following format (note the newlines): |
|
``` |
|
<|user|> |
|
Your message here! |
|
<|assistant|> |
|
``` |
|
|
|
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.** |
|
We have included a [chat template](https://huggingface.co./docs/transformers/main/en/chat_templating) in the tokenizer implementing this template. |
|
|
|
## Intended uses & limitations |
|
|
|
The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co./datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs. |
|
We then further trained the model with a [Jax RM trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_rm.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the dataset mentioned above. |
|
This model is meant as a research artefact. |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during RM training: |
|
- learning_rate: 5e-06 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear cooldown to 0. |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 1.0 |
|
|
|
## Citation |
|
|
|
If you find Tulu 2.5 is useful in your work, please cite it with: |
|
|
|
``` |
|
@misc{ivison2024unpacking, |
|
title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}}, |
|
author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}} |
|
year={2024}, |
|
eprint={2406.09279}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|