alirzb's picture
Model save
3e62b3e verified
metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: SeizureClassifier_AST_B_43829950
    results: []

SeizureClassifier_AST_B_43829950

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0063
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.269 0.99 44 1.1676 0.8564
0.7525 1.99 88 0.5446 0.9777
0.3005 2.98 132 0.2273 0.9876
0.185 4.0 177 0.1556 0.9653
0.0935 4.99 221 0.0798 0.9901
0.0545 5.99 265 0.0313 0.9950
0.0416 6.98 309 0.0278 0.9950
0.0264 8.0 354 0.0682 0.9851
0.0109 8.99 398 0.0311 0.9950
0.0104 9.99 442 0.0085 1.0
0.0083 10.98 486 0.0143 0.9975
0.0067 12.0 531 0.0070 1.0
0.0063 12.99 575 0.0066 1.0
0.006 13.99 619 0.0064 1.0
0.0059 14.92 660 0.0063 1.0

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0