wav2vec2-arabic-gpu-colab-similar-to-german-bigger-warm-up

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6370
  • Wer: 0.4146

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
9.4958 2.83 400 3.4822 1.0
3.2281 5.67 800 2.9404 1.0
2.942 8.51 1200 2.8690 1.0
2.6346 11.35 1600 1.5452 0.9994
1.3472 14.18 2000 0.8261 0.6853
0.8972 17.02 2400 0.6812 0.5737
0.6924 19.85 2800 0.6552 0.5291
0.5687 22.69 3200 0.6108 0.4909
0.4734 25.53 3600 0.5877 0.4674
0.4029 28.37 4000 0.6204 0.4662
0.3483 31.2 4400 0.5932 0.4451
0.307 34.04 4800 0.6445 0.4392
0.2722 36.88 5200 0.6126 0.4292
0.2247 39.71 5600 0.6370 0.4146

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.10.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.