|
--- |
|
license: mit |
|
base_model: facebook/bart-large-xsum |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bert_large_xsum_samsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: test |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.5083 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_large_xsum_samsum |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9030 |
|
- Rouge1: 0.5083 |
|
- Rouge2: 0.2528 |
|
- Rougel: 0.41 |
|
- Rougelsum: 0.4105 |
|
- Gen Len: 29.0183 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 41 | 1.6008 | 0.4779 | 0.2349 | 0.4058 | 0.4056 | 21.1037 | |
|
| No log | 2.0 | 82 | 1.5804 | 0.5104 | 0.2526 | 0.4242 | 0.4239 | 24.689 | |
|
| No log | 3.0 | 123 | 1.7310 | 0.5148 | 0.253 | 0.4162 | 0.4155 | 28.0793 | |
|
| No log | 4.0 | 164 | 1.7974 | 0.5019 | 0.2443 | 0.4127 | 0.4125 | 25.189 | |
|
| No log | 5.0 | 205 | 1.9030 | 0.5083 | 0.2528 | 0.41 | 0.4105 | 29.0183 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|