alexdg19's picture
End of training
db8c9ff
metadata
license: mit
base_model: alexdg19/bert_large_cnn_daily
tags:
  - generated_from_trainer
datasets:
  - cnn_dailymail
metrics:
  - rouge
model-index:
  - name: bert_large_cnn_daily2
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: cnn_dailymail
          type: cnn_dailymail
          config: 3.0.0
          split: test
          args: 3.0.0
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.4504

bert_large_cnn_daily2

This model is a fine-tuned version of alexdg19/bert_large_cnn_daily on the cnn_dailymail dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3008
  • Rouge1: 0.4504
  • Rouge2: 0.2337
  • Rougel: 0.3294
  • Rougelsum: 0.424
  • Gen Len: 60.2728

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 9
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.1882 1.0 1021 1.1904 0.4379 0.223 0.318 0.41 61.3551
0.9513 2.0 2042 1.1891 0.4506 0.2353 0.3312 0.4239 59.6771
0.7581 3.0 3064 1.2440 0.4488 0.2317 0.3273 0.4214 59.9909
0.6364 4.0 4084 1.3008 0.4504 0.2337 0.3294 0.424 60.2728

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1