alexdg19's picture
End of training
dce3ad5
metadata
license: mit
base_model: alexdg19/bert_large_xsum_samsum2
tags:
  - generated_from_trainer
datasets:
  - cnn_dailymail
metrics:
  - rouge
model-index:
  - name: bert_large_cnn_daily
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: cnn_dailymail
          type: cnn_dailymail
          config: 3.0.0
          split: test
          args: 3.0.0
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.4251

bert_large_cnn_daily

This model is a fine-tuned version of alexdg19/bert_large_xsum_samsum2 on the cnn_dailymail dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7065
  • Rouge1: 0.4251
  • Rouge2: 0.2024
  • Rougel: 0.2992
  • Rougelsum: 0.3961
  • Gen Len: 60.6232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 9
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.6632 1.0 1021 1.6262 0.4191 0.1992 0.2957 0.39 60.6205
1.3734 2.0 2042 1.6078 0.4253 0.2046 0.3009 0.397 61.0692
1.1497 3.0 3064 1.6759 0.4254 0.2033 0.2998 0.3967 60.8555
1.0123 4.0 4084 1.7065 0.4251 0.2024 0.2992 0.3961 60.6232

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1