newsdiscourse-model-large
This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5899
- F1: 0.1975
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 0.14 | 100 | 1.9895 | 0.0487 |
No log | 0.28 | 200 | 2.0130 | 0.0512 |
No log | 0.43 | 300 | 1.9527 | 0.0512 |
No log | 0.57 | 400 | 1.9605 | 0.0487 |
2.0539 | 0.71 | 500 | 1.9854 | 0.0618 |
2.0539 | 0.85 | 600 | 1.7978 | 0.1242 |
2.0539 | 1.0 | 700 | 1.7291 | 0.1373 |
2.0539 | 1.14 | 800 | 1.9082 | 0.0487 |
2.0539 | 1.28 | 900 | 1.9300 | 0.0487 |
1.9096 | 1.42 | 1000 | 1.7186 | 0.1414 |
1.9096 | 1.57 | 1100 | 1.7304 | 0.1399 |
1.9096 | 1.71 | 1200 | 1.7281 | 0.1363 |
1.9096 | 1.85 | 1300 | 1.8452 | 0.0576 |
1.9096 | 1.99 | 1400 | 1.7180 | 0.1519 |
1.7842 | 2.14 | 1500 | 1.7450 | 0.1525 |
1.7842 | 2.28 | 1600 | 1.7752 | 0.1344 |
1.7842 | 2.42 | 1700 | 1.7548 | 0.1506 |
1.7842 | 2.56 | 1800 | 1.7185 | 0.1536 |
1.7842 | 2.71 | 1900 | 1.6870 | 0.1536 |
1.7227 | 2.85 | 2000 | 1.7336 | 0.1536 |
1.7227 | 2.99 | 2100 | 1.7217 | 0.1490 |
1.7227 | 3.13 | 2200 | 1.7213 | 0.1482 |
1.7227 | 3.28 | 2300 | 1.7482 | 0.1435 |
1.7227 | 3.42 | 2400 | 1.7559 | 0.1456 |
1.7441 | 3.56 | 2500 | 1.7324 | 0.1406 |
1.7441 | 3.7 | 2600 | 1.6977 | 0.1484 |
1.7441 | 3.85 | 2700 | 1.6276 | 0.1839 |
1.7441 | 3.99 | 2800 | 1.6109 | 0.1876 |
1.7441 | 4.13 | 2900 | 1.6359 | 0.2181 |
1.6515 | 4.27 | 3000 | 1.6463 | 0.1792 |
1.6515 | 4.42 | 3100 | 1.6397 | 0.1828 |
1.6515 | 4.56 | 3200 | 1.6189 | 0.1837 |
1.6515 | 4.7 | 3300 | 1.6096 | 0.1875 |
1.6515 | 4.84 | 3400 | 1.5904 | 0.1925 |
1.6003 | 4.99 | 3500 | 1.5899 | 0.1975 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 1