metadata
tags: autonlp
language: en
widget:
- text: I love AutoNLP 🤗
- text: >-
Bob accepts the challenge, and the next week they're standing in Saint
Peters square. 'This isnt gonna work, he's never going to see me here when
theres this much people. You stay here, I'll go talk to him and you'll see
me on the balcony, the guards know me too.' Half an hour later, Bob and
the pope appear side by side on the balcony. Bobs boss gets a heart
attack, and Bob goes to visit him in the hospital.
datasets:
- akilesh96/autonlp-data-mrcooper_text_classification
co2_eq_emissions: 5.999771405025692
Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 529614927
- CO2 Emissions (in grams): 5.999771405025692
Validation Metrics
- Loss: 0.7582379579544067
- Accuracy: 0.7636103151862464
- Macro F1: 0.770630619486531
- Micro F1: 0.7636103151862464
- Weighted F1: 0.765233270165301
- Macro Precision: 0.7746285216467107
- Micro Precision: 0.7636103151862464
- Weighted Precision: 0.7683270753840836
- Macro Recall: 0.7680576576961138
- Micro Recall: 0.7636103151862464
- Weighted Recall: 0.7636103151862464
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/akilesh96/autonlp-mrcooper_text_classification-529614927
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("akilesh96/autonlp-mrcooper_text_classification-529614927", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("akilesh96/autonlp-mrcooper_text_classification-529614927", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)