BERT base (UBC V2) trained on 500k Arabic NLI triplets
This is a sentence-transformers model finetuned from UBC-NLP/ARBERTv2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: UBC-NLP/ARBERTv2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: ar
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'لماذا رائحة الغسيل بعد الغسيل',
'كيفية التخلص من الرائحة: إذا تم اكتشافها على الفور ، فعادة ما يكون غسل الملابس مرة أخرى هو كل ما يلزم لإزالة الروائح الكريهة. إذا لم ينجح ذلك وما زلت تواجه مشاكل ، جرب إحدى الطرق التالية: اغسل مرة أخرى ولكن هذه المرة أضف كوبًا واحدًا من الخل إلى الحمولة (جنبًا إلى جنب مع منظف الغسيل).',
'حافظ على ملابسك منتعشة وجافة بالمجفف الكهربائي من سيرز. عندما يدور يوم الغسيل ، يمكنك الاعتماد على الأداء الفعال للمجفف الكهربائي. يحتوي سيرز على مجففات تناسب ديكور أي غرفة غسيل. من الفولاذ المقاوم للصدأ إلى تشطيبات الأونيكس ، يسهل تنسيق هذا الجهاز الأنيق مع الغسالة التي تختارها.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.016 | 250 | 2.4152 | - |
0.032 | 500 | 1.24 | - |
0.048 | 750 | 1.0238 | - |
0.064 | 1000 | 0.929 | - |
0.08 | 1250 | 0.8268 | - |
0.096 | 1500 | 0.8117 | - |
0.112 | 1750 | 0.7486 | - |
0.128 | 2000 | 0.7053 | - |
0.144 | 2250 | 0.7131 | - |
0.16 | 2500 | 0.7003 | - |
0.176 | 2750 | 0.6735 | - |
0.192 | 3000 | 0.6548 | - |
0.208 | 3250 | 0.63 | - |
0.224 | 3500 | 0.6037 | - |
0.24 | 3750 | 0.6149 | - |
0.256 | 4000 | 0.5545 | - |
0.272 | 4250 | 0.5385 | - |
0.288 | 4500 | 0.5413 | - |
0.304 | 4750 | 0.5217 | - |
0.32 | 5000 | 0.4884 | 0.4664 |
0.336 | 5250 | 0.5052 | - |
0.352 | 5500 | 0.5239 | - |
0.368 | 5750 | 0.5145 | - |
0.384 | 6000 | 0.4707 | - |
0.4 | 6250 | 0.4514 | - |
0.416 | 6500 | 0.42 | - |
0.432 | 6750 | 0.4747 | - |
0.448 | 7000 | 0.4798 | - |
0.464 | 7250 | 0.4443 | - |
0.48 | 7500 | 0.4402 | - |
0.496 | 7750 | 0.411 | - |
0.512 | 8000 | 0.4546 | - |
0.528 | 8250 | 0.4428 | - |
0.544 | 8500 | 0.4293 | - |
0.56 | 8750 | 0.4052 | - |
0.576 | 9000 | 0.3993 | - |
0.592 | 9250 | 0.3971 | - |
0.608 | 9500 | 0.4246 | - |
0.624 | 9750 | 0.3995 | - |
0.64 | 10000 | 0.4087 | 0.3428 |
0.656 | 10250 | 0.3955 | - |
0.672 | 10500 | 0.3878 | - |
0.688 | 10750 | 0.3896 | - |
0.704 | 11000 | 0.3535 | - |
0.72 | 11250 | 0.3809 | - |
0.736 | 11500 | 0.3502 | - |
0.752 | 11750 | 0.3558 | - |
0.768 | 12000 | 0.3626 | - |
0.784 | 12250 | 0.3607 | - |
0.8 | 12500 | 0.3775 | - |
0.816 | 12750 | 0.3458 | - |
0.832 | 13000 | 0.3498 | - |
0.848 | 13250 | 0.3618 | - |
0.864 | 13500 | 0.3617 | - |
0.88 | 13750 | 0.3529 | - |
0.896 | 14000 | 0.3285 | - |
0.912 | 14250 | 0.3379 | - |
0.928 | 14500 | 0.336 | - |
0.944 | 14750 | 0.3402 | - |
0.96 | 15000 | 0.3391 | 0.2951 |
0.976 | 15250 | 0.3663 | - |
0.992 | 15500 | 0.3461 | - |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Matryoshka2dLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.