metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
The U.S. International Trade Commission (ITC) has become a significant
forum to litigate intellectual property disputes. An adverse result in an
ITC action can lead to a prohibition on importing infringing products,
which, given the importance of the U.S. market, could significantly impact
a company including preventing the importation of many important products
or necessitating workarounds that may limit certain features of their
products.
sentences:
- What was the overall impact of foreign currencies on net sales in 2023?
- >-
What potential consequences could result from intellectual property
disputes in the U.S. International Trade Commission for the company?
- What was the total purchase consideration for the VMware acquisition?
- source_sentence: >-
Reinsurance contracts are normally classified as treaty or facultative
contracts. Treaty reinsurance refers to reinsurance coverage for all or a
portion of a specified group or class of risks ceded by a direct insurer
or reinsurer, while facultative reinsurance involves coverage of specific
individual underlying risks. Reinsurance contracts are further classified
as quota-share or excess.
sentences:
- >-
What type of information will you find under 'Note 13 — Commitments and
Contingencies' in an Annual Report on Form 10-K?
- >-
What type of reinsurance contracts are offered by Berkshire Hathaway
Reinsurance Group?
- >-
What are the consequences for a company violating anti-bribery laws in
the U.S.?
- source_sentence: >-
Commitments and contingencies related to legal proceedings are detailed in
Part II, Item 8, under 'Financial Statements and Supplementary Data – Note
14'.
sentences:
- >-
Where can one find commitments and contingencies related to legal
proceedings in the context provided?
- What is discussed in Item 3. Legal Proceedings of a company's report?
- >-
How are net realized capital gains and losses treated in the financial
statements according to the Company?
- source_sentence: >-
The “Glossary of Terms and Acronyms” is included on pages 315-321 in the
set of financial documents.
sentences:
- >-
What are the principles used in preparing the discussed financial
statements?
- >-
What is the total remaining budget for future common stock repurchases
under the company's stock repurchase programs as of December 31, 2023?
- >-
Where is the “Glossary of Terms and Acronyms” located in a set of
financial documents?
- source_sentence: >-
The table presents our market risk by asset category for positions
accounted for at fair value or accounted for at the lower of cost or fair
value, that are not included in VaR. As of December 2023, equity was at
$1,562 million and debt was at $2,446 million.
sentences:
- >-
What are the market risk values for Goldman Sachs' equity and debt
positions not included in VaR as of December 2023?
- >-
What was the conclusion of the Company's review regarding the impact of
the American Rescue Plan, the Consolidated Appropriations Act, 2021, and
related tax provisions on its business for the fiscal year ended June
30, 2023?
- >-
How much did the company's finance lease obligations total as of
December 31, 2023?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6957142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8371428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9242857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6957142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571424
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09242857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6957142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8371428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9242857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8105294489003092
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7741910430839002
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7773317927980538
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8285714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9185714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27619047619047615
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1734285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09185714285714283
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8285714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9185714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8090367290103152
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7740351473922898
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7776494145961331
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6928571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8585714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6928571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17171428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6928571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8585714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8016663265681359
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7669977324263035
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7711841838569463
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8071428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8585714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8985714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1717142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08985714285714283
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8071428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8585714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8985714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7921056491431833
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7580946712018135
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7627063166788922
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6642857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7842857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8257142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8728571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6642857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26142857142857145
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16514285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08728571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6642857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7842857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8257142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8728571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7689727571743198
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7358214285714282
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7406658506857838
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("akashmaggon/bge-base-financial-matryoshka")
sentences = [
'The table presents our market risk by asset category for positions accounted for at fair value or accounted for at the lower of cost or fair value, that are not included in VaR. As of December 2023, equity was at $1,562 million and debt was at $2,446 million.',
"What are the market risk values for Goldman Sachs' equity and debt positions not included in VaR as of December 2023?",
"What was the conclusion of the Company's review regarding the impact of the American Rescue Plan, the Consolidated Appropriations Act, 2021, and related tax provisions on its business for the fiscal year ended June 30, 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6957 |
cosine_accuracy@3 |
0.8371 |
cosine_accuracy@5 |
0.8714 |
cosine_accuracy@10 |
0.9243 |
cosine_precision@1 |
0.6957 |
cosine_precision@3 |
0.279 |
cosine_precision@5 |
0.1743 |
cosine_precision@10 |
0.0924 |
cosine_recall@1 |
0.6957 |
cosine_recall@3 |
0.8371 |
cosine_recall@5 |
0.8714 |
cosine_recall@10 |
0.9243 |
cosine_ndcg@10 |
0.8105 |
cosine_mrr@10 |
0.7742 |
cosine_map@100 |
0.7773 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7 |
cosine_accuracy@3 |
0.8286 |
cosine_accuracy@5 |
0.8671 |
cosine_accuracy@10 |
0.9186 |
cosine_precision@1 |
0.7 |
cosine_precision@3 |
0.2762 |
cosine_precision@5 |
0.1734 |
cosine_precision@10 |
0.0919 |
cosine_recall@1 |
0.7 |
cosine_recall@3 |
0.8286 |
cosine_recall@5 |
0.8671 |
cosine_recall@10 |
0.9186 |
cosine_ndcg@10 |
0.809 |
cosine_mrr@10 |
0.774 |
cosine_map@100 |
0.7776 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6929 |
cosine_accuracy@3 |
0.8186 |
cosine_accuracy@5 |
0.8586 |
cosine_accuracy@10 |
0.91 |
cosine_precision@1 |
0.6929 |
cosine_precision@3 |
0.2729 |
cosine_precision@5 |
0.1717 |
cosine_precision@10 |
0.091 |
cosine_recall@1 |
0.6929 |
cosine_recall@3 |
0.8186 |
cosine_recall@5 |
0.8586 |
cosine_recall@10 |
0.91 |
cosine_ndcg@10 |
0.8017 |
cosine_mrr@10 |
0.767 |
cosine_map@100 |
0.7712 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6871 |
cosine_accuracy@3 |
0.8071 |
cosine_accuracy@5 |
0.8586 |
cosine_accuracy@10 |
0.8986 |
cosine_precision@1 |
0.6871 |
cosine_precision@3 |
0.269 |
cosine_precision@5 |
0.1717 |
cosine_precision@10 |
0.0899 |
cosine_recall@1 |
0.6871 |
cosine_recall@3 |
0.8071 |
cosine_recall@5 |
0.8586 |
cosine_recall@10 |
0.8986 |
cosine_ndcg@10 |
0.7921 |
cosine_mrr@10 |
0.7581 |
cosine_map@100 |
0.7627 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6643 |
cosine_accuracy@3 |
0.7843 |
cosine_accuracy@5 |
0.8257 |
cosine_accuracy@10 |
0.8729 |
cosine_precision@1 |
0.6643 |
cosine_precision@3 |
0.2614 |
cosine_precision@5 |
0.1651 |
cosine_precision@10 |
0.0873 |
cosine_recall@1 |
0.6643 |
cosine_recall@3 |
0.7843 |
cosine_recall@5 |
0.8257 |
cosine_recall@10 |
0.8729 |
cosine_ndcg@10 |
0.769 |
cosine_mrr@10 |
0.7358 |
cosine_map@100 |
0.7407 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 7 tokens
- mean: 44.39 tokens
- max: 512 tokens
|
- min: 7 tokens
- mean: 20.64 tokens
- max: 51 tokens
|
- Samples:
positive |
anchor |
Johnson & Johnson reported cash and cash equivalents of $21,859 million as of the end of 2023. |
What was the amount of cash and cash equivalents reported by Johnson & Johnson at the end of 2023? |
Johnson & Johnson's consolidated statements of earnings for 2023 reported total net earnings of $35,153 million. |
What was the total net earnings for Johnson & Johnson in 2023? |
As of December 31, 2023, short-term investments were valued at $236,118 thousand and long-term investments at $86,676 thousand. |
What is the total value of short-term and long-term investments held by the company as of December 31, 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5779 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7388 |
0.7509 |
0.7604 |
0.7081 |
0.7579 |
1.6244 |
20 |
0.6572 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7612 |
0.7670 |
0.7729 |
0.7269 |
0.7705 |
2.4365 |
30 |
0.4661 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7623 |
0.7702 |
0.7771 |
0.7386 |
0.7758 |
3.2487 |
40 |
0.3774 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7627 |
0.7712 |
0.7776 |
0.7407 |
0.7773 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}