aisuko's picture
Upload tokenizer
b44c8b3 verified
|
raw
history blame
1.7 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - rouge
base_model: facebook/bart-large-xsum
model-index:
  - name: ft-facebook-bart-large-xsum-on-samsum
    results: []

ft-facebook-bart-large-xsum-on-samsum

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4691
  • Rouge1: 51.1221
  • Rouge2: 25.9275
  • Rougel: 41.5903
  • Rougelsum: 46.7354
  • Gen Len: 26.89

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 0.22 100 1.5053 49.3903 24.5197 40.7578 45.2724 26.3272

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2
  • Datasets 2.17.0
  • Tokenizers 0.15.1