|
--- |
|
license: apache-2.0 |
|
language: fr |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-base-wikinewssum-french |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-base-wikinewssum-french |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co./google/mt5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0917 |
|
- Rouge1: 12.0984 |
|
- Rouge2: 5.7289 |
|
- Rougel: 9.9245 |
|
- Rougelsum: 11.0697 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:| |
|
| No log | 1.0 | 549 | 2.3203 | 11.5172 | 4.9352 | 9.3617 | 10.4605 | |
|
| No log | 2.0 | 1098 | 2.2057 | 11.8469 | 5.2369 | 9.6452 | 10.8337 | |
|
| No log | 3.0 | 1647 | 2.1525 | 11.9096 | 5.4027 | 9.7648 | 10.9315 | |
|
| 3.1825 | 4.0 | 2196 | 2.1307 | 12.0782 | 5.5848 | 9.9614 | 11.1081 | |
|
| 3.1825 | 5.0 | 2745 | 2.1172 | 11.9821 | 5.6042 | 9.8216 | 11.0077 | |
|
| 3.1825 | 6.0 | 3294 | 2.1012 | 12.0845 | 5.6834 | 9.9119 | 11.0741 | |
|
| 3.1825 | 7.0 | 3843 | 2.0964 | 12.1296 | 5.7271 | 9.9495 | 11.1227 | |
|
| 2.3376 | 8.0 | 4392 | 2.0917 | 12.0984 | 5.7289 | 9.9245 | 11.0697 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.13.0 |
|
- Pytorch 1.10.1 |
|
- Datasets 1.16.1 |
|
- Tokenizers 0.10.3 |
|
|