Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: Qwen/Qwen2.5-Coder-7B-Instruct

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  # geopandas
  - path: https://www.fused.io/server/v1/realtime-shared/fsh_7UePa8c68x8u89FjmK2Tuu/run/file?dtype_out_vector=parquet
    type: pretrain
    ds_type: parquet
    text_column: text
    split: train
  # examples
  - path: https://staging.fused.io/server/v1/realtime-shared/fsh_2xCVySNfnwmUhWPssX24cn/run/file?dtype_out_raster=png&dtype_out_vector=parquet&cb=12345
    type: pretrain
    ds_type: parquet
    text_column: text
    split: train
  # docs
  - path: https://www.fused.io/server/v1/realtime-shared/fsh_EycsvX70Y3WosxHhdJ8Y9/run/file?dtype_out_raster=png&dtype_out_vector=parquet
    type: pretrain
    ds_type: parquet
    text_column: text
    split: train
  - path: mlabonne/FineTome-100k
    type: chat_template
    split: train[:1%]
    chat_template: qwen_25
    field_messages: conversations
    message_field_role: from
    message_field_content: value

dataset_prepared_path: last_run_prepared
val_set_size: 0.
output_dir: ./outputs/qlora-out

wandb_project: fused-io-copilot
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:

sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false


gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 2
optimizer: lion_8bit
lr_scheduler: cosine
learning_rate: 0.00001

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: true

gradient_checkpointing: true
logging_steps: 1
flash_attention: true

warmup_steps: 20
saves_per_epoch: 1
deepspeed:
weight_decay: 0.01
special_tokens:
  pad_token: "<|end_of_text|>"

save_safetensors: true

outputs/qlora-out

This model is a fine-tuned version of Qwen/Qwen2.5-Coder-7B-Instruct on the https://www.fused.io/server/v1/realtime-shared/fsh_7UePa8c68x8u89FjmK2Tuu/run/file?dtype_out_vector=parquet, the https://staging.fused.io/server/v1/realtime-shared/fsh_2xCVySNfnwmUhWPssX24cn/run/file?dtype_out_raster=png&dtype_out_vector=parquet&cb=12345, the https://www.fused.io/server/v1/realtime-shared/fsh_EycsvX70Y3WosxHhdJ8Y9/run/file?dtype_out_raster=png&dtype_out_vector=parquet and the mlabonne/FineTome-100k datasets.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.LION_8BIT and the args are: No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 2

Training results

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aidonuts/fused-v0

Base model

Qwen/Qwen2.5-7B
Finetuned
(34)
this model