Fast mamba installation problem
#35
by
freQuensy23
- opened
I've installed mamba-ssm causal-conv1d>=1.2.0 using your instruction, but fast mamba still not avaliable. What have is do wrong?
enviromenta.yml
name: jambo4
channels:
- pytorch
- nvidia
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- asttokens=2.0.5=pyhd3eb1b0_0
- blas=1.0=mkl
- bzip2=1.0.8=h5eee18b_5
- ca-certificates=2024.2.2=hbcca054_0
- certifi=2024.2.2=pyhd8ed1ab_0
- charset-normalizer=2.0.4=pyhd3eb1b0_0
- comm=0.2.1=py311h06a4308_0
- cuda-cudart=12.1.105=0
- cuda-cupti=12.1.105=0
- cuda-libraries=12.1.0=0
- cuda-nvrtc=12.1.105=0
- cuda-nvtx=12.1.105=0
- cuda-opencl=12.4.127=0
- cuda-runtime=12.1.0=0
- cudatoolkit-dev=11.7.0=h1de0b5d_6
- debugpy=1.6.7=py311h6a678d5_0
- decorator=5.1.1=pyhd3eb1b0_0
- executing=0.8.3=pyhd3eb1b0_0
- expat=2.5.0=h6a678d5_0
- ffmpeg=4.3=hf484d3e_0
- filelock=3.13.1=py311h06a4308_0
- freetype=2.12.1=h4a9f257_0
- gmp=6.2.1=h295c915_3
- gmpy2=2.1.2=py311hc9b5ff0_0
- gnutls=3.6.15=he1e5248_0
- idna=3.4=py311h06a4308_0
- intel-openmp=2023.1.0=hdb19cb5_46306
- ipykernel=6.28.0=py311h06a4308_0
- ipython=8.20.0=py311h06a4308_0
- jedi=0.18.1=py311h06a4308_1
- jinja2=3.1.3=py311h06a4308_0
- jpeg=9e=h5eee18b_1
- jupyter_client=8.6.0=py311h06a4308_0
- jupyter_core=5.5.0=py311h06a4308_0
- lame=3.100=h7b6447c_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libcublas=12.1.0.26=0
- libcufft=11.0.2.4=0
- libcufile=1.9.1.3=0
- libcurand=10.3.5.147=0
- libcusolver=11.4.4.55=0
- libcusparse=12.0.2.55=0
- libdeflate=1.17=h5eee18b_1
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libiconv=1.16=h7f8727e_2
- libidn2=2.3.4=h5eee18b_0
- libjpeg-turbo=2.0.0=h9bf148f_0
- libnpp=12.0.2.50=0
- libnvjitlink=12.1.105=0
- libnvjpeg=12.1.1.14=0
- libpng=1.6.39=h5eee18b_0
- libsodium=1.0.18=h7b6447c_0
- libstdcxx-ng=11.2.0=h1234567_1
- libtasn1=4.19.0=h5eee18b_0
- libtiff=4.5.1=h6a678d5_0
- libunistring=0.9.10=h27cfd23_0
- libuuid=1.41.5=h5eee18b_0
- libwebp-base=1.3.2=h5eee18b_0
- llvm-openmp=14.0.6=h9e868ea_0
- lz4-c=1.9.4=h6a678d5_0
- markupsafe=2.1.3=py311h5eee18b_0
- matplotlib-inline=0.1.6=py311h06a4308_0
- mkl=2023.1.0=h213fc3f_46344
- mkl-service=2.4.0=py311h5eee18b_1
- mkl_fft=1.3.8=py311h5eee18b_0
- mkl_random=1.2.4=py311hdb19cb5_0
- mpc=1.1.0=h10f8cd9_1
- mpfr=4.0.2=hb69a4c5_1
- mpmath=1.3.0=py311h06a4308_0
- ncurses=6.4=h6a678d5_0
- nest-asyncio=1.6.0=py311h06a4308_0
- nettle=3.7.3=hbbd107a_1
- networkx=3.1=py311h06a4308_0
- numpy=1.26.4=py311h08b1b3b_0
- numpy-base=1.26.4=py311hf175353_0
- openh264=2.1.1=h4ff587b_0
- openjpeg=2.4.0=h3ad879b_0
- openssl=1.1.1w=h7f8727e_0
- packaging=23.2=py311h06a4308_0
- parso=0.8.3=pyhd3eb1b0_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pillow=10.2.0=py311h5eee18b_0
- platformdirs=3.10.0=py311h06a4308_0
- prompt-toolkit=3.0.43=py311h06a4308_0
- prompt_toolkit=3.0.43=hd3eb1b0_0
- psutil=5.9.0=py311h5eee18b_0
- ptyprocess=0.7.0=pyhd3eb1b0_2
- pure_eval=0.2.2=pyhd3eb1b0_0
- pygments=2.15.1=py311h06a4308_1
- python=3.11.0=h7a1cb2a_3
- python-dateutil=2.8.2=pyhd3eb1b0_0
- pytorch=2.2.2=py3.11_cuda12.1_cudnn8.9.2_0
- pytorch-cuda=12.1=ha16c6d3_5
- pytorch-mutex=1.0=cuda
- pyyaml=6.0.1=py311h5eee18b_0
- pyzmq=25.1.2=py311h6a678d5_0
- readline=8.2=h5eee18b_0
- requests=2.31.0=py311h06a4308_1
- setuptools=68.2.2=py311h06a4308_0
- six=1.16.0=pyhd3eb1b0_1
- sqlite=3.41.2=h5eee18b_0
- stack_data=0.2.0=pyhd3eb1b0_0
- sympy=1.12=py311h06a4308_0
- tbb=2021.8.0=hdb19cb5_0
- tk=8.6.12=h1ccaba5_0
- torchaudio=2.2.2=py311_cu121
- torchtriton=2.2.0=py311
- torchvision=0.17.2=py311_cu121
- tornado=6.3.3=py311h5eee18b_0
- traitlets=5.7.1=py311h06a4308_0
- typing_extensions=4.9.0=py311h06a4308_1
- urllib3=2.1.0=py311h06a4308_0
- wcwidth=0.2.5=pyhd3eb1b0_0
- wheel=0.41.2=py311h06a4308_0
- xz=5.4.6=h5eee18b_0
- yaml=0.2.5=h7b6447c_0
- zeromq=4.3.5=h6a678d5_0
- zlib=1.2.13=h5eee18b_0
- zstd=1.5.5=hc292b87_0
- pip:
- accelerate==0.29.1
- causal-conv1d==1.2.0.post2
- einops==0.7.0
- fsspec==2024.3.1
- huggingface-hub==0.22.2
- mamba-ssm==1.2.0.post1
- ninja==1.11.1.1
- pandas==2.2.1
- pip==24.0
- pytz==2024.1
- regex==2023.12.25
- safetensors==0.4.2
- tokenizers==0.15.2
- tqdm==4.66.2
- transformers==4.40.0.dev0
- tzdata==2024.1
prefix: /home/alexeyv3/.conda/envs/jambo4
code
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
input_ids = tokenizer("In the recent Super Bowl LVIII,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
print(tokenizer.batch_decode(outputs))
torch.cuda.is_avalibale() retruns true
GPU: A100 80gb
I think that .to('cuda') will fix this
freQuensy23
changed discussion status to
closed