Edit model card

sage-mt5-large

banner

Summary

The model corrects spelling errors and typos in both Russian and English languages by bringing all the words in the text to the norm of the language. Corrector had been trained based on the model mT5-large architecture. An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library SAGE.

Public references

Examples

Input Output
Перведи мне текст на аглиском: "Screw you kuys, I am goin hme (c). Переведи мне текст на английском: "Screw you guys, I am going home" (c).
И не чсно прохожим в этот день непогожйи почему я веселый такйо И мне ясно прохожим в этот день непогожий, почему я веселый такой
If you bought something goregous, you well be very happy. If you bought something gorgeous, you will be very happy.

Metrics

Quality

Below are automatic metrics for determining the correctness of the spell checkers. We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all six available datasets:

  • RUSpellRU: texts collected from (LiveJournal), with manually corrected typos and errors;
  • MultidomainGold: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works;
  • MedSpellChecker: texts with errors from medical anamnesis;
  • GitHubTypoCorpusRu: spelling errors and typos in commits from GitHub;
  • BEA60K: English spelling errors collected from several domains;
  • JFLEG: 1601 sentences in English, which contain about 2 thousand spelling errors;

RUSpellRU, MultidomainGold, MedSpellChecker, GitHubTypoCorpusRu are datasets for the Russian spellchecking and BEA60K and JFLEG are those for the English language.

RUSpellRU

Model Precision Recall F1
sage-mt5-large 55.7 68.5 61.4
sage-mt5-large (ft.) 88.4 71.6 79.1
sage-ai-service 93.5 82.4 87.6
gpt-3.5-turbo 39.6 62.3 48.5
gpt-4 69.5 81.0 74.8

MultidomainGold

Model Precision Recall F1
sage-mt5-large 35.4 57.9 43.9
sage-mt5-large (ft.) 65.3 62.7 63.9
sage-ai-service 70.9 68.8 69.9
gpt-3.5-turbo 17.8 56.1 27.0
gpt-4 31.1 78.1 44.5

MedSpellChecker

Model Precision Recall F1
sage-mt5-large 35.1 70.8 47.0
sage-mt5-large (ft.) 77.7 77.5 77.6
sage-ai-service 73.4 76.2 74.9
gpt-3.5-turbo 15.1 53.6 23.5
gpt-4 48.9 88.7 63.1

GitHubTypoCorpusRu

Model Precision Recall F1
sage-mt5-large 47.4 53.8 50.4
sage-mt5-large (ft.) 69.5 46.0 55.3
sage-ai-service 76.1 51.2 61.2
gpt-3.5-turbo 23.7 43.9 30.8
gpt-4 34.7 60.5 44.1

BEA60K

Model Precision Recall F1
sage-mt5-large 64.7 83.8 73.0
gpt-3.5-turbo 66.9 84.1 74.5
gpt-4 68.6 85.2 76.0
Bert (https://github.com/neuspell/neuspell) 65.8 79.6 72.0
SC-LSTM (https://github.com/neuspell/neuspell) 62.2 80.3 72.0

JFLEG

Model Precision Recall F1
sage-mt5-large 74.9 88.4 81.1
gpt-3.5-turbo 77.8 88.6 82.9
gpt-4 77.9 88.3 82.8
Bert (https://github.com/neuspell/neuspell) 78.5 85.4 81.8
SC-LSTM (https://github.com/neuspell/neuspell) 80.6 86.1 83.2

How to use

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("ai-forever/sage-mt5-large")
model = AutoModelForSeq2SeqLM.from_pretrained("ai-forever/sage-mt5-large", device_map='cuda')

sentence = "Перведи мне текст на аглиском: \"Screw you kuys, I am goin hme (c)."
inputs = tokenizer(sentence, max_length=None, padding="longest", truncation=False, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_length = inputs["input_ids"].size(1) * 1.5)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

# ["Переведи мне текст на английском: "Screw you guys, I am going home" (c)."]

Limitations

  • For the Russian language the model is intended to be fine-tuned for better performance.

Resources

License

Model mT5-large, on the basis of which our solution is made, and its source code are supplied under the Apache-2.0 license. Our solution comes with MIT license.

Specifications

  • File size: 5 Gb;
  • Framework: pytorch
  • Version: v1.0
  • Developer: SberDevices, AGI NLP

Contacts

[email protected]

Downloads last month
360
Safetensors
Model size
1.23B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including ai-forever/sage-mt5-large

Evaluation results