Psoriasis-500-100aug-224-swin-large

This model is a fine-tuned version of microsoft/swin-large-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7503
  • Accuracy: 0.8454

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4942 0.9973 92 0.6791 0.7825
0.2458 1.9946 184 0.6565 0.8087
0.0935 2.9919 276 0.6838 0.8140
0.056 4.0 369 0.8758 0.7913
0.0267 4.9973 461 0.7926 0.8245
0.0074 5.9946 553 0.7328 0.8437
0.0056 6.9919 645 0.7332 0.8480
0.0019 8.0 738 0.7667 0.8524
0.0013 8.9973 830 0.7548 0.8437
0.0006 9.9729 920 0.7503 0.8454

Classification Report

Class Precision (%) Recall (%) F1-Score (%) Support
Abnormal 68 81 74 108
Erythrodermic 94 76 84 100
Guttate 92 87 89 114
Inverse 92 93 92 108
Nail 86 84 85 99
Normal 85 87 86 82
Not Define 99 99 99 92
Palm Soles 79 80 80 102
Plaque 88 75 81 84
Psoriatic Arthritis 83 82 83 104
Pustular 77 84 80 112
Scalp 88 94 91 80
Accuracy 85 1185
Macro Avg 86 85 85 1185
Weighted Avg 86 85 85 1185

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
195M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ahmedesmail16/Psoriasis-500-100aug-224-swin-large

Finetuned
(5)
this model

Evaluation results