VICH_300524_epoch_3
This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3866
- Accuracy: 0.954
- Precision: 0.9552
- Recall: 0.954
- F1: 0.9540
- Ratio: 0.474
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 47
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 1
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
---|---|---|---|---|---|---|---|---|
0.339 | 0.0157 | 10 | 0.4216 | 0.945 | 0.9453 | 0.9450 | 0.9450 | 0.487 |
0.3573 | 0.0314 | 20 | 0.4397 | 0.943 | 0.9430 | 0.943 | 0.9430 | 0.501 |
0.4019 | 0.0472 | 30 | 0.4330 | 0.945 | 0.9452 | 0.9450 | 0.9450 | 0.489 |
0.3443 | 0.0629 | 40 | 0.4368 | 0.942 | 0.9434 | 0.942 | 0.9420 | 0.472 |
0.3805 | 0.0786 | 50 | 0.4335 | 0.933 | 0.9331 | 0.933 | 0.9330 | 0.507 |
0.3837 | 0.0943 | 60 | 0.4273 | 0.938 | 0.9380 | 0.938 | 0.9380 | 0.498 |
0.3428 | 0.1101 | 70 | 0.4313 | 0.94 | 0.9403 | 0.94 | 0.9400 | 0.488 |
0.3954 | 0.1258 | 80 | 0.4323 | 0.945 | 0.9458 | 0.9450 | 0.9450 | 0.479 |
0.4144 | 0.1415 | 90 | 0.4299 | 0.94 | 0.9400 | 0.94 | 0.9400 | 0.502 |
0.3481 | 0.1572 | 100 | 0.4249 | 0.939 | 0.9391 | 0.9390 | 0.9390 | 0.491 |
0.3825 | 0.1730 | 110 | 0.4293 | 0.942 | 0.9420 | 0.942 | 0.9420 | 0.498 |
0.3605 | 0.1887 | 120 | 0.4130 | 0.949 | 0.9498 | 0.9490 | 0.9490 | 0.479 |
0.4028 | 0.2044 | 130 | 0.4105 | 0.948 | 0.9490 | 0.948 | 0.9480 | 0.476 |
0.3729 | 0.2201 | 140 | 0.4324 | 0.939 | 0.9391 | 0.9390 | 0.9390 | 0.507 |
0.3611 | 0.2358 | 150 | 0.4255 | 0.937 | 0.9371 | 0.937 | 0.9370 | 0.491 |
0.3683 | 0.2516 | 160 | 0.4290 | 0.943 | 0.9443 | 0.9430 | 0.9430 | 0.473 |
0.351 | 0.2673 | 170 | 0.4215 | 0.942 | 0.9426 | 0.942 | 0.9420 | 0.482 |
0.3697 | 0.2830 | 180 | 0.4280 | 0.944 | 0.9441 | 0.944 | 0.9440 | 0.492 |
0.3851 | 0.2987 | 190 | 0.4251 | 0.945 | 0.9461 | 0.9450 | 0.9450 | 0.475 |
0.335 | 0.3145 | 200 | 0.4276 | 0.945 | 0.9455 | 0.9450 | 0.9450 | 0.483 |
0.3744 | 0.3302 | 210 | 0.4173 | 0.947 | 0.9476 | 0.9470 | 0.9470 | 0.481 |
0.376 | 0.3459 | 220 | 0.4080 | 0.947 | 0.9478 | 0.9470 | 0.9470 | 0.479 |
0.3856 | 0.3616 | 230 | 0.4131 | 0.947 | 0.9472 | 0.9470 | 0.9470 | 0.489 |
0.4036 | 0.3774 | 240 | 0.4285 | 0.937 | 0.9370 | 0.937 | 0.9370 | 0.503 |
0.3863 | 0.3931 | 250 | 0.4159 | 0.939 | 0.9396 | 0.9390 | 0.9390 | 0.481 |
0.3619 | 0.4088 | 260 | 0.4212 | 0.944 | 0.9446 | 0.944 | 0.9440 | 0.482 |
0.4042 | 0.4245 | 270 | 0.4233 | 0.941 | 0.9411 | 0.9410 | 0.9410 | 0.493 |
0.3783 | 0.4403 | 280 | 0.4153 | 0.939 | 0.9390 | 0.9390 | 0.9390 | 0.505 |
0.3744 | 0.4560 | 290 | 0.4170 | 0.943 | 0.9447 | 0.9430 | 0.9429 | 0.469 |
0.4052 | 0.4717 | 300 | 0.4219 | 0.94 | 0.9423 | 0.94 | 0.9399 | 0.464 |
0.3531 | 0.4874 | 310 | 0.4049 | 0.949 | 0.9493 | 0.9490 | 0.9490 | 0.487 |
0.3812 | 0.5031 | 320 | 0.4042 | 0.951 | 0.9520 | 0.9510 | 0.9510 | 0.477 |
0.3587 | 0.5189 | 330 | 0.4030 | 0.95 | 0.9509 | 0.95 | 0.9500 | 0.478 |
0.3455 | 0.5346 | 340 | 0.4007 | 0.951 | 0.9512 | 0.951 | 0.9510 | 0.489 |
0.4174 | 0.5503 | 350 | 0.3989 | 0.952 | 0.9525 | 0.952 | 0.9520 | 0.484 |
0.4173 | 0.5660 | 360 | 0.4004 | 0.948 | 0.9487 | 0.948 | 0.9480 | 0.48 |
0.4012 | 0.5818 | 370 | 0.3956 | 0.95 | 0.9504 | 0.95 | 0.9500 | 0.486 |
0.388 | 0.5975 | 380 | 0.3968 | 0.949 | 0.9490 | 0.949 | 0.9490 | 0.495 |
0.3613 | 0.6132 | 390 | 0.3978 | 0.948 | 0.9482 | 0.948 | 0.9480 | 0.49 |
0.3699 | 0.6289 | 400 | 0.3988 | 0.956 | 0.9563 | 0.956 | 0.9560 | 0.488 |
0.3585 | 0.6447 | 410 | 0.3967 | 0.956 | 0.9569 | 0.956 | 0.9560 | 0.478 |
0.4017 | 0.6604 | 420 | 0.3888 | 0.959 | 0.9595 | 0.959 | 0.9590 | 0.483 |
0.3657 | 0.6761 | 430 | 0.3898 | 0.954 | 0.9541 | 0.954 | 0.9540 | 0.494 |
0.413 | 0.6918 | 440 | 0.3923 | 0.955 | 0.9550 | 0.955 | 0.9550 | 0.499 |
0.3977 | 0.7075 | 450 | 0.3884 | 0.955 | 0.9551 | 0.955 | 0.9550 | 0.491 |
0.4066 | 0.7233 | 460 | 0.3869 | 0.959 | 0.9593 | 0.959 | 0.9590 | 0.487 |
0.3908 | 0.7390 | 470 | 0.3878 | 0.956 | 0.9561 | 0.956 | 0.9560 | 0.492 |
0.4041 | 0.7547 | 480 | 0.3872 | 0.958 | 0.9584 | 0.958 | 0.9580 | 0.486 |
0.4191 | 0.7704 | 490 | 0.3945 | 0.952 | 0.9534 | 0.952 | 0.9520 | 0.472 |
0.3443 | 0.7862 | 500 | 0.3932 | 0.949 | 0.9500 | 0.9490 | 0.9490 | 0.477 |
0.3735 | 0.8019 | 510 | 0.3934 | 0.955 | 0.9552 | 0.955 | 0.9550 | 0.489 |
0.3913 | 0.8176 | 520 | 0.3965 | 0.954 | 0.9541 | 0.954 | 0.9540 | 0.494 |
0.4038 | 0.8333 | 530 | 0.3949 | 0.953 | 0.9531 | 0.953 | 0.9530 | 0.493 |
0.4055 | 0.8491 | 540 | 0.3933 | 0.952 | 0.9524 | 0.952 | 0.9520 | 0.486 |
0.4073 | 0.8648 | 550 | 0.3932 | 0.954 | 0.9546 | 0.954 | 0.9540 | 0.482 |
0.4471 | 0.8805 | 560 | 0.3944 | 0.952 | 0.9532 | 0.952 | 0.9520 | 0.474 |
0.4098 | 0.8962 | 570 | 0.3942 | 0.951 | 0.9525 | 0.9510 | 0.9510 | 0.471 |
0.4512 | 0.9119 | 580 | 0.3933 | 0.952 | 0.9534 | 0.952 | 0.9520 | 0.472 |
0.4309 | 0.9277 | 590 | 0.3914 | 0.952 | 0.9534 | 0.952 | 0.9520 | 0.472 |
0.3962 | 0.9434 | 600 | 0.3894 | 0.953 | 0.9543 | 0.9530 | 0.9530 | 0.473 |
0.4242 | 0.9591 | 610 | 0.3878 | 0.953 | 0.9543 | 0.9530 | 0.9530 | 0.473 |
0.3824 | 0.9748 | 620 | 0.3869 | 0.954 | 0.9552 | 0.954 | 0.9540 | 0.474 |
0.3837 | 0.9906 | 630 | 0.3867 | 0.954 | 0.9552 | 0.954 | 0.9540 | 0.474 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for adriansanz/te-zsc-hybrid_VIC
Base model
projecte-aina/roberta-base-ca-v2-cased-te