Edit model card

SentenceTransformer based on PlanTL-GOB-ES/roberta-base-bne

This is a sentence-transformers model finetuned from PlanTL-GOB-ES/roberta-base-bne. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: PlanTL-GOB-ES/roberta-base-bne
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitges10242608-4ep-rerankv3-sp")
# Run inference
sentences = [
    'Els establiments locals tenen un paper clau en el projecte de la targeta de fidelització, ja que són els que ofereixen descomptes i ofertes especials als consumidors que utilitzen la targeta.',
    'Quin és el paper dels establiments locals en el projecte de la targeta de fidelització?',
    "Quins són els tractaments que beneficien la salut de l'empleat municipal que s'inclouen en l'ajuda?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.0517
cosine_accuracy@3 0.125
cosine_accuracy@5 0.1875
cosine_accuracy@10 0.3858
cosine_precision@1 0.0517
cosine_precision@3 0.0417
cosine_precision@5 0.0375
cosine_precision@10 0.0386
cosine_recall@1 0.0517
cosine_recall@3 0.125
cosine_recall@5 0.1875
cosine_recall@10 0.3858
cosine_ndcg@10 0.1821
cosine_mrr@10 0.122
cosine_map@100 0.1462

Information Retrieval

Metric Value
cosine_accuracy@1 0.0453
cosine_accuracy@3 0.1142
cosine_accuracy@5 0.181
cosine_accuracy@10 0.3815
cosine_precision@1 0.0453
cosine_precision@3 0.0381
cosine_precision@5 0.0362
cosine_precision@10 0.0381
cosine_recall@1 0.0453
cosine_recall@3 0.1142
cosine_recall@5 0.181
cosine_recall@10 0.3815
cosine_ndcg@10 0.1753
cosine_mrr@10 0.1144
cosine_map@100 0.139

Information Retrieval

Metric Value
cosine_accuracy@1 0.0474
cosine_accuracy@3 0.1228
cosine_accuracy@5 0.2004
cosine_accuracy@10 0.3987
cosine_precision@1 0.0474
cosine_precision@3 0.0409
cosine_precision@5 0.0401
cosine_precision@10 0.0399
cosine_recall@1 0.0474
cosine_recall@3 0.1228
cosine_recall@5 0.2004
cosine_recall@10 0.3987
cosine_ndcg@10 0.1851
cosine_mrr@10 0.1217
cosine_map@100 0.1457

Information Retrieval

Metric Value
cosine_accuracy@1 0.0453
cosine_accuracy@3 0.1164
cosine_accuracy@5 0.1681
cosine_accuracy@10 0.3815
cosine_precision@1 0.0453
cosine_precision@3 0.0388
cosine_precision@5 0.0336
cosine_precision@10 0.0381
cosine_recall@1 0.0453
cosine_recall@3 0.1164
cosine_recall@5 0.1681
cosine_recall@10 0.3815
cosine_ndcg@10 0.1753
cosine_mrr@10 0.1146
cosine_map@100 0.1393

Information Retrieval

Metric Value
cosine_accuracy@1 0.0388
cosine_accuracy@3 0.097
cosine_accuracy@5 0.153
cosine_accuracy@10 0.347
cosine_precision@1 0.0388
cosine_precision@3 0.0323
cosine_precision@5 0.0306
cosine_precision@10 0.0347
cosine_recall@1 0.0388
cosine_recall@3 0.097
cosine_recall@5 0.153
cosine_recall@10 0.347
cosine_ndcg@10 0.1569
cosine_mrr@10 0.1011
cosine_map@100 0.1268

Training Details

Training Dataset

Unnamed Dataset

  • Size: 4,173 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 10 tokens
    • mean: 60.84 tokens
    • max: 206 tokens
    • min: 10 tokens
    • mean: 25.34 tokens
    • max: 53 tokens
  • Samples:
    positive anchor
    L'objectiu principal de la persona coordinadora de colònia felina és garantir el benestar dels animals de la colònia. Quin és l'objectiu principal de la persona coordinadora de colònia felina?
    Es tracta d'una sala amb capacitat per a 125 persones, equipada amb un petit escenari, sistema de sonorització, pantalla per a projeccions, camerins i serveis higiènics (WC). Quin és el nombre de persones que pot acollir la sala d'actes del Casal Municipal de la Gent Gran de Sitges?
    Aquest ajut pretén fomentar l’associacionisme empresarial local, per tal de disposar d’agrupacions, gremis o associacions representatives de l’activitat empresarial del municipi. Quin és el paper de les empreses en aquest ajut?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.6130 10 10.8464 - - - - -
0.9808 16 - 0.1060 0.1088 0.1067 0.0984 0.1074
1.2261 20 3.5261 - - - - -
1.8391 30 1.4363 - - - - -
1.9617 32 - 0.1406 0.1468 0.1356 0.1395 0.1373
2.4521 40 0.5627 - - - - -
2.9425 48 - 0.1377 0.1418 0.1427 0.1322 0.1437
3.0651 50 0.2727 - - - - -
3.6782 60 0.1297 - - - - -
3.9234 64 - 0.1393 0.1457 0.139 0.1268 0.1462
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.34.0.dev0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/sitges10242608-4ep-rerankv3-sp

Finetuned
(28)
this model

Evaluation results