|
--- |
|
base_model: PlanTL-GOB-ES/roberta-base-bne |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:512 |
|
- loss:TripletLoss |
|
widget: |
|
- source_sentence: Quin és el requisit per a la potència instal·lada de les instal·lacions |
|
de plaques solars en sòl urbà? |
|
sentences: |
|
- Permet comunicar les intervencions necessàries per executar una instal·lació/remodelació |
|
d’autoconsum amb energia solar fotovoltaica amb una potència instal·lada inferior |
|
a 100 kWp en sòl urbà consolidat. |
|
- Inferior a 100 kWp. |
|
- Aquesta bonificació tindrà caràcter pregat i s’aplicarà a la quota total si la |
|
resolució de la sol•licitud es realitza abans de la liquidació, en cas contrari |
|
es gestionarà la devolució de l’import pagat i bonificat. |
|
- source_sentence: Quins són els exemples d'obres que requereixen una llicència TIPUS |
|
B? |
|
sentences: |
|
- Ubicada al carrer de Port Alegre (Platja de Sant Sebastià), els artistes (dibuix, |
|
pintura, gravat i escultura) poden exposar i vendre les seves obres. |
|
- Col·locació de bastides, arrebossat, estucat i pintat de façanes, noves obertures, |
|
etc. |
|
- TIPUS B Col·locació de bastides a una alçada superior a PB + 1 PP o a més de 6,00 |
|
m Arrebossat, estucat i pintat de façanes que necessiten una bastida amb una alçada |
|
superior a PB + 1 PP o a més de 6,00 m. |
|
- source_sentence: Quin és el propòsit principal del tràmit de canvi de titular de |
|
la llicència de gual? |
|
sentences: |
|
- L'Ajuntament de Sitges atorga subvencions per a les activitats que realitzen les |
|
entitats del municipi que tinguin com a finalitat fomentar l’activitat física |
|
i esportiva al llarg de l’exercici pel qual es sol·licita la subvenció. |
|
- Aquest tràmit permet a la nova persona titular sol·licitar el canvi de nom d'una |
|
llicència de gual, sempre que no variïn la utilització ni les característiques |
|
de la llicència concedida prèviament, i s’acompleixen les ordenances vigents. |
|
- Permet el canvi de nom d'una llicència de gual sense variar la utilització ni |
|
les característiques. |
|
- source_sentence: Quin és el propòsit dels ajuts econòmics? |
|
sentences: |
|
- Aquest tràmit permet a la nova persona titular sol·licitar el canvi de nom d'una |
|
llicència de gual, sempre que no variïn la utilització ni les característiques |
|
de la llicència concedida prèviament, i s’acompleixen les ordenances vigents. |
|
- Ajuts econòmics destinats a reforçar les activitats econòmiques amb suspensió |
|
o limitació d’obertura al públic i per finançar les despeses de lloguer o hipoteca |
|
per empreses i/o establiments comercials |
|
- Reforçar les activitats econòmiques i finançar les despeses de lloguer o hipoteca. |
|
- source_sentence: Quin és el propòsit del Directori de la Vila? |
|
sentences: |
|
- Consulteu les dades i els horaris de funcionament de la instal·lació al Directori |
|
de la Vila. |
|
- Per consultar les dades i els horaris de funcionament de la instal·lació. |
|
- Aquelles persones que s'hagin inscrit a les estades esportives organitzades per |
|
l'Ajuntament de Sitges i que formin part d'una unitat familiar amb uns ingressos |
|
bruts mensuals, que una vegada dividits pel nombre de membres, siguin inferiors |
|
entre una i dues terceres parts de l'IPREM, poden sol·licitar una reducció de |
|
la quota d'aquestes activitats o l'aplicació de la corresponent tarifa bonificada |
|
establerta en les ordenances dels preus públics. |
|
--- |
|
|
|
# SentenceTransformer based on PlanTL-GOB-ES/roberta-base-bne |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co./PlanTL-GOB-ES/roberta-base-bne). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co./PlanTL-GOB-ES/roberta-base-bne) <!-- at revision 0e598176534f3cf2e30105f8286cf2503d6e4731 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("adriansanz/SITGES_robertav1") |
|
# Run inference |
|
sentences = [ |
|
'Quin és el propòsit del Directori de la Vila?', |
|
'Consulteu les dades i els horaris de funcionament de la instal·lació al Directori de la Vila.', |
|
'Per consultar les dades i els horaris de funcionament de la instal·lació.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 512 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | sentence_2 | |
|
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 12 tokens</li><li>mean: 25.79 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 64.52 tokens</li><li>max: 143 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 19.73 tokens</li><li>max: 79 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | sentence_2 | |
|
|:--------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------| |
|
| <code>Quin és el requisit de duració mínima per a obtenir la bonificació de la taxa?</code> | <code>Es concedirà una bonificació del 50 per cent de la quota de la Taxa quan es duguin a terme obres a les vies públiques, que tinguin una duració igual o superior a 1 mes i afectin directament als locals en que es realitzin activitats econòmiques.</code> | <code>1 mes</code> | |
|
| <code>Quin és el document que cal aportar per a rebre els ajuts?</code> | <code>Aportació de documentació. Ajuts per la reactivació de petites empreses i persones autònomes donades d’alta al règim especial de treballadors autònoms (RETA) amb una antiguitat superior als cinc anys (COVID19)</code> | <code>La documentació.</code> | |
|
| <code>Quin és el benefici de la inscripció en el Padró Municipal d'Habitants?</code> | <code>La inscripció en el Padró municipal conté com a obligatories les dades personals de Nom i Cognoms, Sexe, Nacionalitat, Lloc i data de naixement, Número de document d'identidad (DNI, NIE, Passaport), i Certificat o títol escolar o académic.</code> | <code>Té una informació actualitzada i correcta.</code> | |
|
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.EUCLIDEAN", |
|
"triplet_margin": 5 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 10 |
|
- `fp16`: True |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.4.0+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### TripletLoss |
|
```bibtex |
|
@misc{hermans2017defense, |
|
title={In Defense of the Triplet Loss for Person Re-Identification}, |
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, |
|
year={2017}, |
|
eprint={1703.07737}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |