distilhubert-finetuned-ravdess
This model is a fine-tuned version of ntu-spml/distilhubert on the RAVDESS dataset. It achieves the following results on the evaluation set:
- Loss: 0.9331
- Accuracy: 0.8438
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0641 | 1.0 | 144 | 2.0414 | 0.2778 |
1.751 | 2.0 | 288 | 1.7801 | 0.3854 |
1.5345 | 3.0 | 432 | 1.3610 | 0.5417 |
1.1913 | 4.0 | 576 | 1.1896 | 0.5417 |
0.8227 | 5.0 | 720 | 0.7924 | 0.7535 |
0.6563 | 6.0 | 864 | 0.6772 | 0.7743 |
0.4082 | 7.0 | 1008 | 0.6398 | 0.7847 |
0.5133 | 8.0 | 1152 | 0.6409 | 0.7951 |
0.0467 | 9.0 | 1296 | 0.7356 | 0.7951 |
0.0232 | 10.0 | 1440 | 0.8220 | 0.8160 |
0.0298 | 11.0 | 1584 | 0.7164 | 0.8438 |
0.0021 | 12.0 | 1728 | 0.7578 | 0.8611 |
0.0014 | 13.0 | 1872 | 0.6806 | 0.8507 |
0.0012 | 14.0 | 2016 | 0.6953 | 0.8507 |
0.0009 | 15.0 | 2160 | 0.7311 | 0.8403 |
0.0007 | 16.0 | 2304 | 0.7312 | 0.8472 |
0.0006 | 17.0 | 2448 | 0.7528 | 0.8438 |
0.0005 | 18.0 | 2592 | 0.7748 | 0.8299 |
0.0005 | 19.0 | 2736 | 0.7692 | 0.8472 |
0.0004 | 20.0 | 2880 | 0.7806 | 0.8403 |
0.0003 | 21.0 | 3024 | 0.7907 | 0.8438 |
0.0003 | 22.0 | 3168 | 0.7909 | 0.8438 |
0.0003 | 23.0 | 3312 | 0.8060 | 0.8472 |
0.0003 | 24.0 | 3456 | 0.8302 | 0.8438 |
0.0002 | 25.0 | 3600 | 0.8296 | 0.8438 |
0.0002 | 26.0 | 3744 | 0.8306 | 0.8403 |
0.0002 | 27.0 | 3888 | 0.8399 | 0.8438 |
0.0002 | 28.0 | 4032 | 0.8447 | 0.8438 |
0.0002 | 29.0 | 4176 | 0.8488 | 0.8403 |
0.0002 | 30.0 | 4320 | 0.8564 | 0.8472 |
0.0002 | 31.0 | 4464 | 0.8618 | 0.8472 |
0.0001 | 32.0 | 4608 | 0.8736 | 0.8438 |
0.0001 | 33.0 | 4752 | 0.8793 | 0.8403 |
0.0001 | 34.0 | 4896 | 0.8840 | 0.8438 |
0.0001 | 35.0 | 5040 | 0.8870 | 0.8438 |
0.0001 | 36.0 | 5184 | 0.8882 | 0.8472 |
0.0001 | 37.0 | 5328 | 0.9033 | 0.8403 |
0.0001 | 38.0 | 5472 | 0.8980 | 0.8403 |
0.0001 | 39.0 | 5616 | 0.9081 | 0.8472 |
0.0001 | 40.0 | 5760 | 0.9086 | 0.8472 |
0.0001 | 41.0 | 5904 | 0.9119 | 0.8438 |
0.0001 | 42.0 | 6048 | 0.9106 | 0.8507 |
0.0001 | 43.0 | 6192 | 0.9188 | 0.8438 |
0.0001 | 44.0 | 6336 | 0.9238 | 0.8438 |
0.0001 | 45.0 | 6480 | 0.9282 | 0.8438 |
0.0001 | 46.0 | 6624 | 0.9286 | 0.8438 |
0.0001 | 47.0 | 6768 | 0.9312 | 0.8438 |
0.0001 | 48.0 | 6912 | 0.9296 | 0.8472 |
0.0001 | 49.0 | 7056 | 0.9324 | 0.8438 |
0.0001 | 50.0 | 7200 | 0.9331 | 0.8438 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for adhityamw11/distilhubert-finetuned_distillhubert-ravdess
Base model
ntu-spml/distilhubert