metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- arrow
metrics:
- accuracy
model-index:
- name: tcg-magic-classifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: acidtib/tcg-magic-cards
type: arrow
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.25452380952380954
tcg-magic-classifier
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the acidtib/tcg-magic-cards dataset. It achieves the following results on the evaluation set:
- Loss: 7.9836
- Accuracy: 0.2545
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 420
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
8.3148 | 1.0 | 488 | 8.2632 | 0.0055 |
8.1958 | 2.0 | 976 | 8.1519 | 0.0598 |
8.089 | 3.0 | 1464 | 8.0596 | 0.1567 |
8.0208 | 4.0 | 1952 | 8.0033 | 0.2276 |
7.983 | 5.0 | 2440 | 7.9836 | 0.2545 |
Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1