abhiman23897's picture
End of training
01307ad
metadata
license: apache-2.0
base_model: google/flan-t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: flan-t5-small-lamp-4u-finetuned-3
    results: []

flan-t5-small-lamp-4u-finetuned-3

This model is a fine-tuned version of google/flan-t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4088
  • Rouge1: 0.1634
  • Rouge2: 0.0510
  • Rougel: 0.1494
  • Rougelsum: 0.1500

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.6388 1.0 1566 2.5235 0.1413 0.0452 0.1311 0.1316
2.5039 2.0 3132 2.4539 0.1469 0.0474 0.1354 0.1359
2.401 3.0 4698 2.4320 0.1525 0.0486 0.1409 0.1414
2.3748 4.0 6264 2.4193 0.1528 0.0495 0.1414 0.1417
2.2997 5.0 7830 2.4120 0.1559 0.0490 0.1427 0.1430
2.2742 6.0 9396 2.4042 0.1562 0.0508 0.1436 0.1438
2.2404 7.0 10962 2.4039 0.1584 0.0515 0.1457 0.1461
2.2249 8.0 12528 2.4010 0.1624 0.0509 0.1491 0.1495
2.1985 9.0 14094 2.3993 0.1622 0.0520 0.1493 0.1501
2.1509 10.0 15660 2.3993 0.1599 0.0505 0.1454 0.1462
2.1226 11.0 17226 2.4026 0.1631 0.0519 0.1498 0.1503
2.107 12.0 18792 2.4040 0.1623 0.0513 0.1487 0.1491
2.0855 13.0 20358 2.4049 0.1634 0.0517 0.1493 0.1498
2.0678 14.0 21924 2.4028 0.1631 0.0515 0.1489 0.1495
2.0899 15.0 23490 2.4052 0.1628 0.0510 0.1489 0.1496
2.0777 16.0 25056 2.4050 0.1628 0.0503 0.1493 0.1498
2.0572 17.0 26622 2.4076 0.1620 0.0511 0.1481 0.1488
2.0408 18.0 28188 2.4066 0.1625 0.0510 0.1487 0.1495
2.0538 19.0 29754 2.4076 0.1635 0.0510 0.1496 0.1503
2.0283 20.0 31320 2.4088 0.1634 0.0510 0.1494 0.1500

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0