aradia-ctc-hubert-ft

This model is a fine-tuned version of /l/users/abdulwahab.sahyoun/aradia/aradia-ctc-hubert-ft on the ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_300HRS - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8536
  • Wer: 0.3737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.43 100 3.6934 1.0
No log 0.87 200 3.0763 1.0
No log 1.3 300 2.9737 1.0
No log 1.74 400 2.5734 1.0
5.0957 2.17 500 1.1900 0.9011
5.0957 2.61 600 0.9726 0.7572
5.0957 3.04 700 0.8960 0.6209
5.0957 3.48 800 0.7851 0.5515
5.0957 3.91 900 0.7271 0.5115
1.0312 4.35 1000 0.7053 0.4955
1.0312 4.78 1100 0.6823 0.4737
1.0312 5.22 1200 0.6768 0.4595
1.0312 5.65 1300 0.6635 0.4488
1.0312 6.09 1400 0.6602 0.4390
0.6815 6.52 1500 0.6464 0.4310
0.6815 6.95 1600 0.6455 0.4394
0.6815 7.39 1700 0.6630 0.4312
0.6815 7.82 1800 0.6521 0.4126
0.6815 8.26 1900 0.6282 0.4284
0.544 8.69 2000 0.6248 0.4178
0.544 9.13 2100 0.6510 0.4104
0.544 9.56 2200 0.6527 0.4013
0.544 10.0 2300 0.6511 0.4064
0.544 10.43 2400 0.6734 0.4061
0.4478 10.87 2500 0.6756 0.4145
0.4478 11.3 2600 0.6727 0.3990
0.4478 11.74 2700 0.6619 0.4007
0.4478 12.17 2800 0.6614 0.4019
0.4478 12.61 2900 0.6695 0.4004
0.3919 13.04 3000 0.6778 0.3966
0.3919 13.48 3100 0.6872 0.3971
0.3919 13.91 3200 0.6882 0.3945
0.3919 14.35 3300 0.7177 0.4010
0.3919 14.78 3400 0.6888 0.4043
0.3767 15.22 3500 0.7124 0.4202
0.3767 15.65 3600 0.7276 0.4120
0.3767 16.09 3700 0.7265 0.4034
0.3767 16.52 3800 0.7392 0.4077
0.3767 16.95 3900 0.7403 0.3965
0.3603 17.39 4000 0.7445 0.4016
0.3603 17.82 4100 0.7579 0.4012
0.3603 18.26 4200 0.7225 0.3963
0.3603 18.69 4300 0.7355 0.3951
0.3603 19.13 4400 0.7482 0.3925
0.3153 19.56 4500 0.7723 0.3972
0.3153 20.0 4600 0.7469 0.3898
0.3153 20.43 4700 0.7800 0.3944
0.3153 20.87 4800 0.7827 0.3897
0.3153 21.3 4900 0.7935 0.3914
0.286 21.74 5000 0.7984 0.3750
0.286 22.17 5100 0.7945 0.3830
0.286 22.61 5200 0.8011 0.3775
0.286 23.04 5300 0.7978 0.3824
0.286 23.48 5400 0.8161 0.3833
0.2615 23.91 5500 0.7823 0.3858
0.2615 24.35 5600 0.8312 0.3863
0.2615 24.78 5700 0.8427 0.3819
0.2615 25.22 5800 0.8432 0.3802
0.2615 25.65 5900 0.8286 0.3794
0.2408 26.09 6000 0.8224 0.3824
0.2408 26.52 6100 0.8228 0.3823
0.2408 26.95 6200 0.8324 0.3795
0.2408 27.39 6300 0.8564 0.3744
0.2408 27.82 6400 0.8629 0.3774
0.2254 28.26 6500 0.8545 0.3778
0.2254 28.69 6600 0.8492 0.3767
0.2254 29.13 6700 0.8511 0.3751
0.2254 29.56 6800 0.8491 0.3753
0.2254 30.0 6900 0.8536 0.3737

Framework versions

  • Transformers 4.18.0.dev0
  • Pytorch 1.10.2+cu113
  • Datasets 1.18.4
  • Tokenizers 0.11.6
Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.