abdulmanaam's picture
End of training
243fbdd verified
---
license: mit
base_model: thenlper/gte-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: gte-base-clickbait-task1-20-epoch-post_title
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gte-base-clickbait-task1-20-epoch-post_title
This model is a fine-tuned version of [thenlper/gte-base](https://huggingface.co./thenlper/gte-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1698
- Accuracy: 0.7125
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 200 | 0.8221 | 0.67 |
| No log | 2.0 | 400 | 0.7310 | 0.7075 |
| 0.8027 | 3.0 | 600 | 0.7771 | 0.6975 |
| 0.8027 | 4.0 | 800 | 0.9364 | 0.6925 |
| 0.3367 | 5.0 | 1000 | 1.0995 | 0.685 |
| 0.3367 | 6.0 | 1200 | 1.3589 | 0.695 |
| 0.3367 | 7.0 | 1400 | 1.5960 | 0.69 |
| 0.0659 | 8.0 | 1600 | 1.7658 | 0.6925 |
| 0.0659 | 9.0 | 1800 | 1.8539 | 0.7075 |
| 0.0186 | 10.0 | 2000 | 1.9483 | 0.705 |
| 0.0186 | 11.0 | 2200 | 2.0515 | 0.69 |
| 0.0186 | 12.0 | 2400 | 2.0866 | 0.6775 |
| 0.0073 | 13.0 | 2600 | 2.1074 | 0.6925 |
| 0.0073 | 14.0 | 2800 | 2.1309 | 0.7075 |
| 0.0068 | 15.0 | 3000 | 2.1519 | 0.72 |
| 0.0068 | 16.0 | 3200 | 2.1612 | 0.7175 |
| 0.0068 | 17.0 | 3400 | 2.1304 | 0.715 |
| 0.003 | 18.0 | 3600 | 2.1813 | 0.71 |
| 0.003 | 19.0 | 3800 | 2.1652 | 0.7125 |
| 0.0029 | 20.0 | 4000 | 2.1698 | 0.7125 |
### Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1