Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: numind/NuExtract-v1.5
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - de21fae5ac47661c_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/de21fae5ac47661c_train_data.json
  type:
    field_input: text
    field_instruction: instruction
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: false
group_by_length: true
hub_model_id: abaddon182/26cf2c69-a394-4d8b-b791-d8ffbbb8a8ad
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 3e-5
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 1500
micro_batch_size: 8
mlflow_experiment_name: /tmp/de21fae5ac47661c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 15
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.999
  adam_epsilon: 1e-8
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: false
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2c3b324c-136d-4803-b1ef-7a62d9d3c6cf
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2c3b324c-136d-4803-b1ef-7a62d9d3c6cf
warmup_steps: 50
weight_decay: 0.1
xformers_attention: null

26cf2c69-a394-4d8b-b791-d8ffbbb8a8ad

This model is a fine-tuned version of numind/NuExtract-v1.5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 0.1780
0.0 0.0479 150 0.0002
0.0 0.0958 300 0.0002
0.0 0.1437 450 0.0001
0.0 0.1916 600 0.0001
0.0 0.2395 750 0.0001
0.0 0.2874 900 0.0001
0.0 0.3352 1050 0.0001
0.0007 0.3831 1200 0.0001
0.0003 0.4310 1350 0.0000
0.0 0.4789 1500 0.0000

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for abaddon182/26cf2c69-a394-4d8b-b791-d8ffbbb8a8ad

Adapter
(228)
this model