🧩 Configuration
slices:
- sources:
- model: liminerity/M7-7b
layer_range: [0, 32]
- model: AurelPx/Percival_01-7b-slerp
layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/M7-7b
parameters:
t:
- filter: self_attn
value: [0.8006027834577485, 0.009328524130124638, 0.8621983214027452, 0.3145686958412437, 0.15715134219207227]
- filter: mlp
value: [0.1993972165422515, 0.9906714758698754, 0.13780167859725478, 0.6854313041587563, 0.8428486578079277]
- value: 0.9507953064688142
dtype: bfloat16
random_seed: 0
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "aaron-di/Yamshadowexperiment28M70.8-0.01-0.86-0.31-0.16-0.95-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.