|
--- |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: ATS-Bart-Large-CNN |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ATS-Bart-Large-CNN |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1044 |
|
- Rouge1: 0.6648 |
|
- Rouge2: 0.4542 |
|
- Rougel: 0.5743 |
|
- Rougelsum: 0.5743 |
|
- Gen Len: 79.5693 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 274 | 0.8020 | 0.6276 | 0.3994 | 0.5208 | 0.5212 | 77.3942 | |
|
| 0.7545 | 2.0 | 548 | 0.8005 | 0.6469 | 0.4278 | 0.5488 | 0.5488 | 79.8577 | |
|
| 0.7545 | 3.0 | 822 | 0.8290 | 0.6533 | 0.4371 | 0.56 | 0.56 | 78.7865 | |
|
| 0.3296 | 4.0 | 1096 | 0.8996 | 0.6581 | 0.4439 | 0.5636 | 0.5637 | 78.8522 | |
|
| 0.3296 | 5.0 | 1370 | 0.9740 | 0.6602 | 0.4486 | 0.5644 | 0.5645 | 78.8869 | |
|
| 0.1575 | 6.0 | 1644 | 1.0374 | 0.6617 | 0.4493 | 0.5689 | 0.5687 | 78.7974 | |
|
| 0.1575 | 7.0 | 1918 | 1.0972 | 0.6613 | 0.4513 | 0.5706 | 0.5706 | 79.9069 | |
|
| 0.0868 | 8.0 | 2192 | 1.1044 | 0.6648 | 0.4542 | 0.5743 | 0.5743 | 79.5693 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|