Bilateral Reference for High-Resolution Dichotomous Image Segmentation

Peng Zheng 1,4,5,6,  Dehong Gao 2,  Deng-Ping Fan 1*,  Li Liu 3,  Jorma Laaksonen 4,  Wanli Ouyang 5,  Nicu Sebe 6
1 Nankai University  2 Northwestern Polytechnical University  3 National University of Defense Technology  4 Aalto University  5 Shanghai AI Laboratory  6 University of Trento 

This repo holds the official weights of BiRefNet for general matting.

Training Sets:

Validation Sets:

  • TE-P3M-500-P

Performance:

Dataset Method Smeasure maxFm meanEm MAE maxEm meanFm wFmeasure adpEm adpFm HCE
TE-P3M-500-P BiRefNet-portrai--epoch_150 .983 .996 .991 .006 .997 .988 .990 .933 .965 .000

Check the main BiRefNet model repo for more info and how to use it:
https://huggingface.co./ZhengPeng7/BiRefNet/blob/main/README.md

Also check the GitHub repo of BiRefNet for all things you may want:
https://github.com/ZhengPeng7/BiRefNet

Acknowledgement:

  • Many thanks to @fal for their generous support on GPU resources for training this BiRefNet for portrait matting.

Citation

@article{zheng2024birefnet,
  title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
  author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
  journal={CAAI Artificial Intelligence Research},
  volume = {3},
  pages = {9150038},
  year={2024}
}
Downloads last month
50,690
Safetensors
Model size
221M params
Tensor type
I64
·
F32
·
Inference Examples
Inference API (serverless) does not yet support BiRefNet models for this pipeline type.

Spaces using ZhengPeng7/BiRefNet-portrait 6