Zhe-chen's picture
End of training
b4a3d6d verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - timit_asr
metrics:
  - wer
model-index:
  - name: wav2vec2-base-timit-demo-google-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: timit_asr
          type: timit_asr
          config: clean
          split: None
          args: clean
        metrics:
          - name: Wer
            type: wer
            value: 0.3354696437185583

wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the timit_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4743
  • Wer: 0.3355

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.4394 4.0 500 1.2662 0.8530
0.5192 8.0 1000 0.4308 0.4176
0.1896 12.0 1500 0.4249 0.3656
0.1158 16.0 2000 0.4405 0.3583
0.0791 20.0 2500 0.4949 0.3481
0.0578 24.0 3000 0.4895 0.3448
0.0462 28.0 3500 0.4743 0.3355

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.1.2
  • Datasets 3.0.1
  • Tokenizers 0.20.0