ZeroXClem's picture
Adding Evaluation Results (#1)
0369cb8 verified
metadata
license: apache-2.0
library_name: transformers
tags:
  - merge
  - mergekit
  - lazymergekit
  - bunnycore/QandoraExp-7B
  - trollek/Qwen2.5-7B-CySecButler-v0.1
base_model:
  - bunnycore/QandoraExp-7B
  - trollek/Qwen2.5-7B-CySecButler-v0.1
model-index:
  - name: Qwen2.5-7B-Qandora-CySec
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 67.73
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 36.26
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 22.89
            name: exact match
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 6.71
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 13.41
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 38.72
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
          name: Open LLM Leaderboard

Qwen2.5-7B-Qandora-CySec

ZeroXClem/Qwen2.5-7B-Qandora-CySec is an advanced model merge combining Q&A capabilities and cybersecurity expertise using the mergekit framework. This model excels in both general question-answering tasks and specialized cybersecurity domains.

πŸ”¬ Quants

ZeroXClem/Qwen2.5-7B-Qandora-CySec quantized in GGUF format can be found here:

πŸš€ Model Components

🧩 Merge Configuration

The models are merged using spherical linear interpolation (SLERP) for optimal blending:

slices:
  - sources:
      - model: bunnycore/QandoraExp-7B
        layer_range: [0, 28]
      - model: trollek/Qwen2.5-7B-CySecButler-v0.1
        layer_range: [0, 28]
merge_method: slerp
base_model: bunnycore/QandoraExp-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Key Parameters

  • Self-Attention (self_attn): Controls blending across self-attention layers
  • MLP: Adjusts Multi-Layer Perceptron balance
  • Global Weight (t.value): 0.5 for equal contribution from both models
  • Data Type: bfloat16 for efficiency and precision

🎯 Applications

  1. General Q&A Tasks
  2. Cybersecurity Analysis
  3. Hybrid Scenarios (general knowledge + cybersecurity)

Ollama Model Card

The GGUF quantized versions can be used directly in Ollama using the following model card. Simple save as Modelfile in the same directory.

FROM ./qwen2.5-7b-qandora-cysec-q5_0.gguf  # Change to your specific quant

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 0.7
PARAMETER top_p 0.8
PARAMETER repeat_penalty 1.05
PARAMETER top_k 20

TEMPLATE """{{ if .Messages }}
{{- if or .System .Tools }}<|im_start|>system
{{ .System }}
{{- if .Tools }}

# Tools

You are provided with function signatures within <tools></tools> XML tags:
<tools>{{- range .Tools }}
{"type": "function", "function": {{ .Function }}}{{- end }}
</tools>

For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
{{- end }}<|im_end|>
{{ end }}
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
{{- if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
{{ else if eq .Role "assistant" }}<|im_start|>assistant
{{ if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}{{ if not $last }}<|im_end|>
{{ end }}
{{- else if eq .Role "tool" }}<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{ end }}
{{- if and (ne .Role "assistant") $last }}<|im_start|>assistant
{{ end }}
{{- end }}
{{- else }}
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ end }}{{ .Response }}{{ if .Response }}<|im_end|>{{ end }}"""

# set the system message
SYSTEM """You are Qwen, merged by ZeroXClem. As such, you are a high quality assistant that excels in general question-answering tasks, code generation, and specialized cybersecurity domains."""

Then create the ollama model by running:

ollama create qwen2.5-7B-qandora-cysec -f Modelfile

Once completed, you can run your ollama model by:

ollama run qwen2.5-7B-qandora-cysec

πŸ›  Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "ZeroXClem/Qwen2.5-7B-Qandora-CySec"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

input_text = "What are the fundamentals of python programming?"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=100)
response = tokenizer.decode(output[0], skip_special_tokens=True)
print(response)

πŸ“œ License

This model inherits the licenses of its base models. Refer to bunnycore/QandoraExp-7B and trollek/Qwen2.5-7B-CySecButler-v0.1 for usage terms.

πŸ™ Acknowledgements

  • bunnycore (QandoraExp-7B)
  • trollek (Qwen2.5-7B-CySecButler-v0.1)
  • mergekit project

πŸ“š Citation

If you use this model, please cite this repository and the original base models.

πŸ’‘ Tags

merge, mergekit, lazymergekit, bunnycore/QandoraExp-7B, trollek/Qwen2.5-7B-CySecButler-v0.1, cybersecurity, Q&A

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 30.95
IFEval (0-Shot) 67.73
BBH (3-Shot) 36.26
MATH Lvl 5 (4-Shot) 22.89
GPQA (0-shot) 6.71
MuSR (0-shot) 13.41
MMLU-PRO (5-shot) 38.72