license: apache-2.0
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
- bunnycore/QandoraExp-7B
- trollek/Qwen2.5-7B-CySecButler-v0.1
base_model:
- bunnycore/QandoraExp-7B
- trollek/Qwen2.5-7B-CySecButler-v0.1
model-index:
- name: Qwen2.5-7B-Qandora-CySec
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 67.73
name: strict accuracy
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 36.26
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 22.89
name: exact match
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.71
name: acc_norm
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.41
name: acc_norm
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 38.72
name: accuracy
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-Qandora-CySec
name: Open LLM Leaderboard
Qwen2.5-7B-Qandora-CySec
ZeroXClem/Qwen2.5-7B-Qandora-CySec is an advanced model merge combining Q&A capabilities and cybersecurity expertise using the mergekit framework. This model excels in both general question-answering tasks and specialized cybersecurity domains.
π¬ Quants
ZeroXClem/Qwen2.5-7B-Qandora-CySec quantized in GGUF format can be found here:
π Model Components
- bunnycore/QandoraExp-7B: Powerful Q&A capabilities
- trollek/Qwen2.5-7B-CySecButler-v0.1: Specialized cybersecurity knowledge
𧩠Merge Configuration
The models are merged using spherical linear interpolation (SLERP) for optimal blending:
slices:
- sources:
- model: bunnycore/QandoraExp-7B
layer_range: [0, 28]
- model: trollek/Qwen2.5-7B-CySecButler-v0.1
layer_range: [0, 28]
merge_method: slerp
base_model: bunnycore/QandoraExp-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
Key Parameters
- Self-Attention (self_attn): Controls blending across self-attention layers
- MLP: Adjusts Multi-Layer Perceptron balance
- Global Weight (t.value): 0.5 for equal contribution from both models
- Data Type: bfloat16 for efficiency and precision
π― Applications
- General Q&A Tasks
- Cybersecurity Analysis
- Hybrid Scenarios (general knowledge + cybersecurity)
Ollama Model Card
The GGUF quantized versions can be used directly in Ollama using the following model card. Simple save as Modelfile in the same directory.
FROM ./qwen2.5-7b-qandora-cysec-q5_0.gguf # Change to your specific quant
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 0.7
PARAMETER top_p 0.8
PARAMETER repeat_penalty 1.05
PARAMETER top_k 20
TEMPLATE """{{ if .Messages }}
{{- if or .System .Tools }}<|im_start|>system
{{ .System }}
{{- if .Tools }}
# Tools
You are provided with function signatures within <tools></tools> XML tags:
<tools>{{- range .Tools }}
{"type": "function", "function": {{ .Function }}}{{- end }}
</tools>
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
{{- end }}<|im_end|>
{{ end }}
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
{{- if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
{{ else if eq .Role "assistant" }}<|im_start|>assistant
{{ if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}{{ if not $last }}<|im_end|>
{{ end }}
{{- else if eq .Role "tool" }}<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{ end }}
{{- if and (ne .Role "assistant") $last }}<|im_start|>assistant
{{ end }}
{{- end }}
{{- else }}
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ end }}{{ .Response }}{{ if .Response }}<|im_end|>{{ end }}"""
# set the system message
SYSTEM """You are Qwen, merged by ZeroXClem. As such, you are a high quality assistant that excels in general question-answering tasks, code generation, and specialized cybersecurity domains."""
Then create the ollama model by running:
ollama create qwen2.5-7B-qandora-cysec -f Modelfile
Once completed, you can run your ollama model by:
ollama run qwen2.5-7B-qandora-cysec
π Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "ZeroXClem/Qwen2.5-7B-Qandora-CySec"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
input_text = "What are the fundamentals of python programming?"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=100)
response = tokenizer.decode(output[0], skip_special_tokens=True)
print(response)
π License
This model inherits the licenses of its base models. Refer to bunnycore/QandoraExp-7B and trollek/Qwen2.5-7B-CySecButler-v0.1 for usage terms.
π Acknowledgements
- bunnycore (QandoraExp-7B)
- trollek (Qwen2.5-7B-CySecButler-v0.1)
- mergekit project
π Citation
If you use this model, please cite this repository and the original base models.
π‘ Tags
merge, mergekit, lazymergekit, bunnycore/QandoraExp-7B, trollek/Qwen2.5-7B-CySecButler-v0.1, cybersecurity, Q&A
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 30.95 |
IFEval (0-Shot) | 67.73 |
BBH (3-Shot) | 36.26 |
MATH Lvl 5 (4-Shot) | 22.89 |
GPQA (0-shot) | 6.71 |
MuSR (0-shot) | 13.41 |
MMLU-PRO (5-shot) | 38.72 |