n_rmsProp_VitB-p16-384-2e-4-batch_16_epoch_4_classes_24
This model is a fine-tuned version of google/vit-base-patch32-384 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1513
- Accuracy: 0.9698
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.4909 | 0.07 | 100 | 2.5622 | 0.1810 |
1.0233 | 0.14 | 200 | 1.5439 | 0.5302 |
0.3917 | 0.21 | 300 | 0.4218 | 0.8649 |
0.3294 | 0.28 | 400 | 0.3144 | 0.8879 |
0.1525 | 0.35 | 500 | 0.1960 | 0.9440 |
0.187 | 0.42 | 600 | 0.1911 | 0.9353 |
0.18 | 0.49 | 700 | 0.3485 | 0.8908 |
0.1597 | 0.56 | 800 | 0.2581 | 0.9224 |
0.1589 | 0.63 | 900 | 0.2150 | 0.9239 |
0.0976 | 0.7 | 1000 | 0.1706 | 0.9454 |
0.1222 | 0.77 | 1100 | 0.2224 | 0.9296 |
0.1084 | 0.84 | 1200 | 0.1827 | 0.9411 |
0.1042 | 0.91 | 1300 | 0.1634 | 0.9569 |
0.0498 | 0.97 | 1400 | 0.1684 | 0.9468 |
0.0273 | 1.04 | 1500 | 0.1579 | 0.9483 |
0.1075 | 1.11 | 1600 | 0.3496 | 0.9224 |
0.0331 | 1.18 | 1700 | 0.2488 | 0.9397 |
0.0145 | 1.25 | 1800 | 0.1981 | 0.9440 |
0.1468 | 1.32 | 1900 | 0.1710 | 0.9612 |
0.1152 | 1.39 | 2000 | 0.3349 | 0.9124 |
0.008 | 1.46 | 2100 | 0.1780 | 0.9411 |
0.0092 | 1.53 | 2200 | 0.1836 | 0.9425 |
0.0066 | 1.6 | 2300 | 0.2236 | 0.9440 |
0.1097 | 1.67 | 2400 | 0.3331 | 0.9224 |
0.0012 | 1.74 | 2500 | 0.2369 | 0.9440 |
0.0008 | 1.81 | 2600 | 0.1923 | 0.9411 |
0.0094 | 1.88 | 2700 | 0.2788 | 0.9368 |
0.0167 | 1.95 | 2800 | 0.2251 | 0.9468 |
0.0007 | 2.02 | 2900 | 0.1828 | 0.9555 |
0.0015 | 2.09 | 3000 | 0.1306 | 0.9641 |
0.0027 | 2.16 | 3100 | 0.1711 | 0.9540 |
0.0101 | 2.23 | 3200 | 0.2063 | 0.9540 |
0.0005 | 2.3 | 3300 | 0.1861 | 0.9511 |
0.079 | 2.37 | 3400 | 0.1426 | 0.9612 |
0.0031 | 2.44 | 3500 | 0.1545 | 0.9555 |
0.0408 | 2.51 | 3600 | 0.1576 | 0.9626 |
0.0007 | 2.58 | 3700 | 0.1931 | 0.9626 |
0.014 | 2.65 | 3800 | 0.2289 | 0.9526 |
0.0004 | 2.72 | 3900 | 0.1713 | 0.9598 |
0.0418 | 2.79 | 4000 | 0.2065 | 0.9583 |
0.0002 | 2.86 | 4100 | 0.1933 | 0.9569 |
0.0007 | 2.92 | 4200 | 0.1742 | 0.9598 |
0.0405 | 2.99 | 4300 | 0.2192 | 0.9540 |
0.0002 | 3.06 | 4400 | 0.1821 | 0.9626 |
0.0001 | 3.13 | 4500 | 0.1927 | 0.9655 |
0.0 | 3.2 | 4600 | 0.1782 | 0.9670 |
0.0001 | 3.27 | 4700 | 0.1620 | 0.9698 |
0.0003 | 3.34 | 4800 | 0.2122 | 0.9626 |
0.0001 | 3.41 | 4900 | 0.1736 | 0.9641 |
0.0007 | 3.48 | 5000 | 0.1815 | 0.9655 |
0.0001 | 3.55 | 5100 | 0.1840 | 0.9670 |
0.0001 | 3.62 | 5200 | 0.1551 | 0.9713 |
0.0 | 3.69 | 5300 | 0.1545 | 0.9698 |
0.0 | 3.76 | 5400 | 0.1521 | 0.9698 |
0.0 | 3.83 | 5500 | 0.1465 | 0.9713 |
0.0002 | 3.9 | 5600 | 0.1543 | 0.9698 |
0.0 | 3.97 | 5700 | 0.1513 | 0.9698 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 195
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for ZaneHorrible/n_rmsProp_VitB-p16-384-2e-4-batch_16_epoch_4_classes_24
Base model
google/vit-base-patch32-384