metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: google-vit-base-patch16-224-in21k-batch_16_epoch_4_classes_24
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9683908045977011
google-vit-base-patch16-224-in21k-batch_16_epoch_4_classes_24
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1385
- Accuracy: 0.9684
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7768 | 0.07 | 100 | 0.7113 | 0.9282 |
0.3925 | 0.14 | 200 | 0.4597 | 0.8908 |
0.2437 | 0.21 | 300 | 0.3130 | 0.9282 |
0.2105 | 0.28 | 400 | 0.3497 | 0.9023 |
0.1744 | 0.35 | 500 | 0.3150 | 0.9124 |
0.167 | 0.42 | 600 | 0.2949 | 0.9239 |
0.1176 | 0.49 | 700 | 0.3204 | 0.9195 |
0.077 | 0.56 | 800 | 0.3104 | 0.9253 |
0.1113 | 0.63 | 900 | 0.1950 | 0.9511 |
0.1172 | 0.7 | 1000 | 0.2692 | 0.9239 |
0.0971 | 0.77 | 1100 | 0.3097 | 0.9267 |
0.1143 | 0.84 | 1200 | 0.2072 | 0.9454 |
0.1545 | 0.91 | 1300 | 0.2859 | 0.9253 |
0.0794 | 0.97 | 1400 | 0.2893 | 0.9224 |
0.0951 | 1.04 | 1500 | 0.2094 | 0.9483 |
0.0657 | 1.11 | 1600 | 0.2714 | 0.9353 |
0.0068 | 1.18 | 1700 | 0.2305 | 0.9425 |
0.0511 | 1.25 | 1800 | 0.1682 | 0.9555 |
0.0629 | 1.32 | 1900 | 0.2328 | 0.9454 |
0.0373 | 1.39 | 2000 | 0.3263 | 0.9310 |
0.0885 | 1.46 | 2100 | 0.2341 | 0.9454 |
0.0433 | 1.53 | 2200 | 0.2670 | 0.9397 |
0.0046 | 1.6 | 2300 | 0.2308 | 0.9468 |
0.0054 | 1.67 | 2400 | 0.3182 | 0.9296 |
0.0952 | 1.74 | 2500 | 0.2297 | 0.9411 |
0.1361 | 1.81 | 2600 | 0.2058 | 0.9454 |
0.1124 | 1.88 | 2700 | 0.1656 | 0.9598 |
0.0339 | 1.95 | 2800 | 0.1933 | 0.9526 |
0.0021 | 2.02 | 2900 | 0.1475 | 0.9569 |
0.0248 | 2.09 | 3000 | 0.1806 | 0.9583 |
0.0013 | 2.16 | 3100 | 0.1899 | 0.9526 |
0.0035 | 2.23 | 3200 | 0.1391 | 0.9641 |
0.0358 | 2.3 | 3300 | 0.1593 | 0.9684 |
0.0026 | 2.37 | 3400 | 0.1927 | 0.9612 |
0.001 | 2.44 | 3500 | 0.1756 | 0.9583 |
0.0113 | 2.51 | 3600 | 0.1512 | 0.9713 |
0.0009 | 2.58 | 3700 | 0.1540 | 0.9698 |
0.0498 | 2.65 | 3800 | 0.1498 | 0.9641 |
0.0084 | 2.72 | 3900 | 0.1435 | 0.9655 |
0.001 | 2.79 | 4000 | 0.1199 | 0.9713 |
0.0011 | 2.86 | 4100 | 0.1301 | 0.9655 |
0.003 | 2.92 | 4200 | 0.1350 | 0.9727 |
0.0025 | 2.99 | 4300 | 0.1764 | 0.9583 |
0.0006 | 3.06 | 4400 | 0.1564 | 0.9713 |
0.0006 | 3.13 | 4500 | 0.1524 | 0.9713 |
0.0006 | 3.2 | 4600 | 0.1515 | 0.9727 |
0.0006 | 3.27 | 4700 | 0.1633 | 0.9741 |
0.0005 | 3.34 | 4800 | 0.1404 | 0.9713 |
0.0005 | 3.41 | 4900 | 0.1586 | 0.9684 |
0.0005 | 3.48 | 5000 | 0.1576 | 0.9655 |
0.0005 | 3.55 | 5100 | 0.1505 | 0.9684 |
0.0153 | 3.62 | 5200 | 0.1369 | 0.9684 |
0.0005 | 3.69 | 5300 | 0.1579 | 0.9670 |
0.0005 | 3.76 | 5400 | 0.1451 | 0.9698 |
0.0005 | 3.83 | 5500 | 0.1417 | 0.9698 |
0.0005 | 3.9 | 5600 | 0.1380 | 0.9698 |
0.0004 | 3.97 | 5700 | 0.1385 | 0.9684 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2