|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: ZachBeesley/food-classifier |
|
results: [] |
|
datasets: |
|
- food101 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# ZachBeesley/food-classifier |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.3376 |
|
- Validation Loss: 0.3213 |
|
- Train Accuracy: 0.921 |
|
- Epoch: 4 |
|
|
|
## Model description |
|
|
|
Image-classification model that can identify foods based on pictures |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Accuracy | Epoch | |
|
|:----------:|:---------------:|:--------------:|:-----:| |
|
| 2.6919 | 1.5372 | 0.848 | 0 | |
|
| 1.1404 | 0.8059 | 0.881 | 1 | |
|
| 0.6375 | 0.6164 | 0.865 | 2 | |
|
| 0.4379 | 0.3822 | 0.915 | 3 | |
|
| 0.3376 | 0.3213 | 0.921 | 4 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- TensorFlow 2.12.0 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |