YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

base_model_id = "mistralai/Mistral-7B-v0.1" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 )

base_model = AutoModelForCausalLM.from_pretrained( base_model_id, # Mistral, same as before quantization_config=bnb_config, # Same quantization config as before device_map="auto", trust_remote_code=True, )

eval_tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True)

from peft import PeftModel

ft_model = PeftModel.from_pretrained(base_model, "ZEECO1/CancerLLM-Mistral7b/checkpoint-500")

eval_prompt = " what are the drugs against lung cancer: # " model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to("cuda")

ft_model.eval() with torch.no_grad(): print(eval_tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=100, repetition_penalty=1.15)[0], skip_special_tokens=True))

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.