Evaluation Report
Testing Data
Dataset: CIFAR-10 Test Set
Metrics: Forget class accuracy(loss), Retain class accuracy(loss)
Training Details
Training Procedure
- Base Model: ResNet18
- Dataset: CIFAR-10
- Excluded Class: Varies by model
- Loss Function: Negative Log-Likelihood Loss
- Forget loss coefficient (alpha): 0.15
- Gradient normalization clip: 0.5
- Optimizer: SGD with:
- Learning rate: 0.1
- Momentum: 0.9
- Weight decay: 5e-4
- Nesterov: True
- Scheduler: CosineAnnealingLR (T_max: 200)
- Training Epochs: 1
- Batch Size: 2500
- Hardware: Single GPU (NVIDIA GeForce RTX 3090)
Algorithm
Loss Function for Unlearning
The overall loss function is defined as:
Gradient Update:
- Forget loss gradient ascent (negating gradients):
- Gradient clipping:
where ( C ) is the clipping threshold.
Model | Forget Class | Forget class acc(loss) | Retain class acc(loss) |
---|---|---|---|
cifar10_resnet18_AdvNegGrad_0.pth | Airplane | 0.0 (28.448) | 90.52 (0.631) |
cifar10_resnet18_AdvNegGrad_1.pth | Automobile | 0.0 (31.394) | 91.27 (0.516) |
cifar10_resnet18_AdvNegGrad_2.pth | Bird | 0.0 (30.110) | 92.72 (0.475) |
cifar10_resnet18_AdvNegGrad_3.pth | Cat | 0.0 (26.171) | 92.44 (0.512) |
cifar10_resnet18_AdvNegGrad_4.pth | Deer | 0.0 (27.805) | 91.19 (0.561) |
cifar10_resnet18_AdvNegGrad_5.pth | Dog | 0.0 (28.574) | 92.81 (0.456) |
cifar10_resnet18_AdvNegGrad_6.pth | Frog | 0.0 (28.360) | 92.18 (0.486) |
cifar10_resnet18_AdvNegGrad_7.pth | Horse | 0.0 (32.505) | 92.89 (0.401) |
cifar10_resnet18_AdvNegGrad_8.pth | Ship | 0.0 (29.307) | 91.34 (0.543) |
cifar10_resnet18_AdvNegGrad_9.pth | Truck | 0.0 (28.959) | 92.47 (0.474) |
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.
Model tree for Yurim0507/AdvNegGrad
Base model
jaeunglee/resnet18-cifar10-unlearning