metadata
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: There are no relevant matters to disclose under this Item for this period.
sentences:
- >-
How much did non-cash items contribute to the cash provided by operating
activities in fiscal 2023?
- >-
Are there any legal matters under Item 3 that need to be disclosed for
this period?
- What is the primary therapeutic use of Linzess (linaclotide)?
- source_sentence: >-
As of December 31, 2023, we had a $500,000 revolving credit facility with
JPMorgan Chase Bank as administrative agent, with an interest rate based
on the SOFR plus 1.475%, a commitment fee of 0.175% for unused amounts,
and conditions such as maintaining a total leverage ratio of less than
3.0x and a consolidated fixed charge coverage ratio of greater than 1.5x.
sentences:
- >-
What percentage of U.S. admissions revenues in 2023 was attributed to
films from the company's seven largest movie studio distributors?
- >-
What are the terms of the revolving credit facility agreement with
JPMorgan as of December 31, 2023?
- What was the postpaid churn rate for AT&T Inc. in 2023?
- source_sentence: >-
Gross margin increased from $22,095 million in 2022 to $24,690 million in
2023, amounting to a $2,595 million increase.
sentences:
- >-
How much did the gross margin increase in fiscal year 2023 compared to
2022?
- >-
What percentage of Meta's U.S. workforce in 2023 were represented by
people with disabilities, veterans, and members of the LGBTQ+ community?
- >-
How many FedEx-branded packaging produced in 2022 was third-party
certified?
- source_sentence: >-
NHTSA has proposed CAFE standards for model years 2027–2031, and the EPA
has drafted GHG emission standards for 2027–2032. Both sets of standards
are awaiting finalization.
sentences:
- What methods does the company use to advertise its products?
- What types of products does Garmin design, develop, and distribute?
- >-
What are the projected years covered by the new CAFE and GHG emission
standards proposed by NHTSA and the EPA?
- source_sentence: >-
As of December 31, 2023, the fair value and amortized cost, net of
valuation allowance, for the Republic of Korea's government securities
were $1,784 million and $1,723 million respectively.
sentences:
- >-
What was the fair value and amortized cost, net of valuation allowance,
for the Republic of Korea's government securities as of December 31,
2023?
- How does the company advance autonomous vehicle technology?
- >-
What were the key factors affecting the company's cash flow from
operations in fiscal 2023?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8285714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8571428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27619047619047615
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0907142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8285714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8571428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7981646895635455
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7633208616780044
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7670469746658456
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.69
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.69
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.69
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7976622307973412
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7636388888888889
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7675482221709721
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6857142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8142857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8514285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8957142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6857142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17028571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08957142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6857142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8142857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8514285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8957142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7916274982255576
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7582437641723355
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7624248845655235
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6757142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8414285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8885714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6757142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16828571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08885714285714286
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6757142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8414285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8885714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.781962439522339
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7478424036281178
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7523517680786094
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6414285714285715
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7657142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7957142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8585714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6414285714285715
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2552380952380952
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15914285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08585714285714285
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6414285714285715
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7657142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7957142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8585714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7479917583081255
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7129206349206347
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7185335911194088
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Yuki20/bge-base-financial-matryoshka")
sentences = [
"As of December 31, 2023, the fair value and amortized cost, net of valuation allowance, for the Republic of Korea's government securities were $1,784 million and $1,723 million respectively.",
"What was the fair value and amortized cost, net of valuation allowance, for the Republic of Korea's government securities as of December 31, 2023?",
'How does the company advance autonomous vehicle technology?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6871 |
cosine_accuracy@3 |
0.8286 |
cosine_accuracy@5 |
0.8571 |
cosine_accuracy@10 |
0.9071 |
cosine_precision@1 |
0.6871 |
cosine_precision@3 |
0.2762 |
cosine_precision@5 |
0.1714 |
cosine_precision@10 |
0.0907 |
cosine_recall@1 |
0.6871 |
cosine_recall@3 |
0.8286 |
cosine_recall@5 |
0.8571 |
cosine_recall@10 |
0.9071 |
cosine_ndcg@10 |
0.7982 |
cosine_mrr@10 |
0.7633 |
cosine_map@100 |
0.767 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.69 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8543 |
cosine_accuracy@10 |
0.9043 |
cosine_precision@1 |
0.69 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1709 |
cosine_precision@10 |
0.0904 |
cosine_recall@1 |
0.69 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8543 |
cosine_recall@10 |
0.9043 |
cosine_ndcg@10 |
0.7977 |
cosine_mrr@10 |
0.7636 |
cosine_map@100 |
0.7675 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6857 |
cosine_accuracy@3 |
0.8143 |
cosine_accuracy@5 |
0.8514 |
cosine_accuracy@10 |
0.8957 |
cosine_precision@1 |
0.6857 |
cosine_precision@3 |
0.2714 |
cosine_precision@5 |
0.1703 |
cosine_precision@10 |
0.0896 |
cosine_recall@1 |
0.6857 |
cosine_recall@3 |
0.8143 |
cosine_recall@5 |
0.8514 |
cosine_recall@10 |
0.8957 |
cosine_ndcg@10 |
0.7916 |
cosine_mrr@10 |
0.7582 |
cosine_map@100 |
0.7624 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6757 |
cosine_accuracy@3 |
0.8 |
cosine_accuracy@5 |
0.8414 |
cosine_accuracy@10 |
0.8886 |
cosine_precision@1 |
0.6757 |
cosine_precision@3 |
0.2667 |
cosine_precision@5 |
0.1683 |
cosine_precision@10 |
0.0889 |
cosine_recall@1 |
0.6757 |
cosine_recall@3 |
0.8 |
cosine_recall@5 |
0.8414 |
cosine_recall@10 |
0.8886 |
cosine_ndcg@10 |
0.782 |
cosine_mrr@10 |
0.7478 |
cosine_map@100 |
0.7524 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6414 |
cosine_accuracy@3 |
0.7657 |
cosine_accuracy@5 |
0.7957 |
cosine_accuracy@10 |
0.8586 |
cosine_precision@1 |
0.6414 |
cosine_precision@3 |
0.2552 |
cosine_precision@5 |
0.1591 |
cosine_precision@10 |
0.0859 |
cosine_recall@1 |
0.6414 |
cosine_recall@3 |
0.7657 |
cosine_recall@5 |
0.7957 |
cosine_recall@10 |
0.8586 |
cosine_ndcg@10 |
0.748 |
cosine_mrr@10 |
0.7129 |
cosine_map@100 |
0.7185 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 45.58 tokens
- max: 289 tokens
|
- min: 9 tokens
- mean: 20.34 tokens
- max: 41 tokens
|
- Samples:
positive |
anchor |
Billed business grew significantly over the past two years, increasing from $228.2 billion in 2021 to $281.6 billion in 2022, and reaching $329.5 billion in 2023. |
How did billed business figures change from 2021 to 2023 as stated in the text? |
The Federal Reserve may limit an FHC’s ability to conduct permissible activities if it or any of its depository institution subsidiaries fails to maintain a well-capitalized and well-managed status. If non-compliant after 180 days, the Federal Reserve may require the FHC to divest its depository institution subsidiaries or cease all FHC Activities. |
What happens if an FHC does not meet the Federal Reserve's eligibility requirements? |
For the fiscal year ending January 28, 2023, the basic net income per share was calculated to be $7.24, based on the net income and weighted average number of shares outstanding. |
What was the basic net income per share in the fiscal year ending January 28, 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_768_cosine_map@100 |
dim_512_cosine_map@100 |
dim_256_cosine_map@100 |
dim_128_cosine_map@100 |
dim_64_cosine_map@100 |
0.8122 |
10 |
1.588 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7593 |
0.7550 |
0.7472 |
0.7347 |
0.6970 |
1.6244 |
20 |
0.7059 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7623 |
0.7652 |
0.7559 |
0.7517 |
0.7127 |
2.4365 |
30 |
0.4826 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7675 |
0.7683 |
0.7603 |
0.7512 |
0.7166 |
3.2487 |
40 |
0.3992 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.767 |
0.7675 |
0.7624 |
0.7524 |
0.7185 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}