Yuki20's picture
Add new SentenceTransformer model
1c6579f verified
metadata
base_model: BAAI/bge-base-en-v1.5
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: There are no relevant matters to disclose under this Item for this period.
    sentences:
      - >-
        How much did non-cash items contribute to the cash provided by operating
        activities in fiscal 2023?
      - >-
        Are there any legal matters under Item 3 that need to be disclosed for
        this period?
      - What is the primary therapeutic use of Linzess (linaclotide)?
  - source_sentence: >-
      As of December 31, 2023, we had a $500,000 revolving credit facility with
      JPMorgan Chase Bank as administrative agent, with an interest rate based
      on the SOFR plus 1.475%, a commitment fee of 0.175% for unused amounts,
      and conditions such as maintaining a total leverage ratio of less than
      3.0x and a consolidated fixed charge coverage ratio of greater than 1.5x.
    sentences:
      - >-
        What percentage of U.S. admissions revenues in 2023 was attributed to
        films from the company's seven largest movie studio distributors?
      - >-
        What are the terms of the revolving credit facility agreement with
        JPMorgan as of December 31, 2023?
      - What was the postpaid churn rate for AT&T Inc. in 2023?
  - source_sentence: >-
      Gross margin increased from $22,095 million in 2022 to $24,690 million in
      2023, amounting to a $2,595 million increase.
    sentences:
      - >-
        How much did the gross margin increase in fiscal year 2023 compared to
        2022?
      - >-
        What percentage of Meta's U.S. workforce in 2023 were represented by
        people with disabilities, veterans, and members of the LGBTQ+ community?
      - >-
        How many FedEx-branded packaging produced in 2022 was third-party
        certified?
  - source_sentence: >-
      NHTSA has proposed CAFE standards for model years 2027–2031, and the EPA
      has drafted GHG emission standards for 2027–2032. Both sets of standards
      are awaiting finalization.
    sentences:
      - What methods does the company use to advertise its products?
      - What types of products does Garmin design, develop, and distribute?
      - >-
        What are the projected years covered by the new CAFE and GHG emission
        standards proposed by NHTSA and the EPA?
  - source_sentence: >-
      As of December 31, 2023, the fair value and amortized cost, net of
      valuation allowance, for the Republic of Korea's government securities
      were $1,784 million and $1,723 million respectively.
    sentences:
      - >-
        What was the fair value and amortized cost, net of valuation allowance,
        for the Republic of Korea's government securities as of December 31,
        2023?
      - How does the company advance autonomous vehicle technology?
      - >-
        What were the key factors affecting the company's cash flow from
        operations in fiscal 2023?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6871428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8285714285714286
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8571428571428571
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9071428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6871428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27619047619047615
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1714285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0907142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6871428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8285714285714286
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8571428571428571
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9071428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7981646895635455
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7633208616780044
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7670469746658456
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.69
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8171428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8542857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9042857142857142
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.69
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2723809523809524
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17085714285714282
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09042857142857141
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.69
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8171428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8542857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9042857142857142
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7976622307973412
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7636388888888889
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7675482221709721
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6857142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8142857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8514285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8957142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6857142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2714285714285714
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17028571428571426
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08957142857142855
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6857142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8142857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8514285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8957142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7916274982255576
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7582437641723355
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7624248845655235
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6757142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8414285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8885714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6757142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26666666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16828571428571426
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08885714285714286
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6757142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8414285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8885714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.781962439522339
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7478424036281178
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7523517680786094
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6414285714285715
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7657142857142857
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7957142857142857
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8585714285714285
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6414285714285715
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2552380952380952
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15914285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08585714285714285
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6414285714285715
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7657142857142857
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7957142857142857
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8585714285714285
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7479917583081255
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7129206349206347
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7185335911194088
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Yuki20/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "As of December 31, 2023, the fair value and amortized cost, net of valuation allowance, for the Republic of Korea's government securities were $1,784 million and $1,723 million respectively.",
    "What was the fair value and amortized cost, net of valuation allowance, for the Republic of Korea's government securities as of December 31, 2023?",
    'How does the company advance autonomous vehicle technology?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6871
cosine_accuracy@3 0.8286
cosine_accuracy@5 0.8571
cosine_accuracy@10 0.9071
cosine_precision@1 0.6871
cosine_precision@3 0.2762
cosine_precision@5 0.1714
cosine_precision@10 0.0907
cosine_recall@1 0.6871
cosine_recall@3 0.8286
cosine_recall@5 0.8571
cosine_recall@10 0.9071
cosine_ndcg@10 0.7982
cosine_mrr@10 0.7633
cosine_map@100 0.767

Information Retrieval

Metric Value
cosine_accuracy@1 0.69
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8543
cosine_accuracy@10 0.9043
cosine_precision@1 0.69
cosine_precision@3 0.2724
cosine_precision@5 0.1709
cosine_precision@10 0.0904
cosine_recall@1 0.69
cosine_recall@3 0.8171
cosine_recall@5 0.8543
cosine_recall@10 0.9043
cosine_ndcg@10 0.7977
cosine_mrr@10 0.7636
cosine_map@100 0.7675

Information Retrieval

Metric Value
cosine_accuracy@1 0.6857
cosine_accuracy@3 0.8143
cosine_accuracy@5 0.8514
cosine_accuracy@10 0.8957
cosine_precision@1 0.6857
cosine_precision@3 0.2714
cosine_precision@5 0.1703
cosine_precision@10 0.0896
cosine_recall@1 0.6857
cosine_recall@3 0.8143
cosine_recall@5 0.8514
cosine_recall@10 0.8957
cosine_ndcg@10 0.7916
cosine_mrr@10 0.7582
cosine_map@100 0.7624

Information Retrieval

Metric Value
cosine_accuracy@1 0.6757
cosine_accuracy@3 0.8
cosine_accuracy@5 0.8414
cosine_accuracy@10 0.8886
cosine_precision@1 0.6757
cosine_precision@3 0.2667
cosine_precision@5 0.1683
cosine_precision@10 0.0889
cosine_recall@1 0.6757
cosine_recall@3 0.8
cosine_recall@5 0.8414
cosine_recall@10 0.8886
cosine_ndcg@10 0.782
cosine_mrr@10 0.7478
cosine_map@100 0.7524

Information Retrieval

Metric Value
cosine_accuracy@1 0.6414
cosine_accuracy@3 0.7657
cosine_accuracy@5 0.7957
cosine_accuracy@10 0.8586
cosine_precision@1 0.6414
cosine_precision@3 0.2552
cosine_precision@5 0.1591
cosine_precision@10 0.0859
cosine_recall@1 0.6414
cosine_recall@3 0.7657
cosine_recall@5 0.7957
cosine_recall@10 0.8586
cosine_ndcg@10 0.748
cosine_mrr@10 0.7129
cosine_map@100 0.7185

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 45.58 tokens
    • max: 289 tokens
    • min: 9 tokens
    • mean: 20.34 tokens
    • max: 41 tokens
  • Samples:
    positive anchor
    Billed business grew significantly over the past two years, increasing from $228.2 billion in 2021 to $281.6 billion in 2022, and reaching $329.5 billion in 2023. How did billed business figures change from 2021 to 2023 as stated in the text?
    The Federal Reserve may limit an FHC’s ability to conduct permissible activities if it or any of its depository institution subsidiaries fails to maintain a well-capitalized and well-managed status. If non-compliant after 180 days, the Federal Reserve may require the FHC to divest its depository institution subsidiaries or cease all FHC Activities. What happens if an FHC does not meet the Federal Reserve's eligibility requirements?
    For the fiscal year ending January 28, 2023, the basic net income per share was calculated to be $7.24, based on the net income and weighted average number of shares outstanding. What was the basic net income per share in the fiscal year ending January 28, 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_map@100 dim_512_cosine_map@100 dim_256_cosine_map@100 dim_128_cosine_map@100 dim_64_cosine_map@100
0.8122 10 1.588 - - - - -
0.9746 12 - 0.7593 0.7550 0.7472 0.7347 0.6970
1.6244 20 0.7059 - - - - -
1.9492 24 - 0.7623 0.7652 0.7559 0.7517 0.7127
2.4365 30 0.4826 - - - - -
2.9239 36 - 0.7675 0.7683 0.7603 0.7512 0.7166
3.2487 40 0.3992 - - - - -
3.8985 48 - 0.767 0.7675 0.7624 0.7524 0.7185
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}