Qt5ALBERT_Unbalance

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3374
  • Train Accuracy: 0.8943
  • Validation Loss: 0.2540
  • Validation Accuracy: 0.9294
  • Epoch: 8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': 0.001, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.3440 0.8894 0.2519 0.9294 0
0.3376 0.8943 0.2590 0.9294 1
0.3333 0.8940 0.2496 0.9294 2
0.3339 0.8943 0.2589 0.9294 3
0.3360 0.8943 0.2470 0.9294 4
0.3340 0.8943 0.2445 0.9294 5
0.3354 0.8943 0.2576 0.9294 6
0.3404 0.8943 0.2572 0.9294 7
0.3374 0.8943 0.2540 0.9294 8

Framework versions

  • Transformers 4.29.2
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
63
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.