Qt20ALBERT_Unbalance

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1378
  • Train Accuracy: 0.9559
  • Validation Loss: 0.2005
  • Validation Accuracy: 0.9359
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': 0.001, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.2122 0.9454 0.1637 0.9586 0
0.2095 0.9462 0.1649 0.9586 1
0.2104 0.9462 0.1704 0.9586 2
0.2064 0.9462 0.1593 0.9586 3
0.1982 0.9462 0.1824 0.9586 4
0.2003 0.9462 0.1635 0.9586 5
0.1947 0.9456 0.1591 0.9586 6
0.1852 0.9459 0.1772 0.9586 7
0.1650 0.9467 0.1982 0.9586 8
0.1378 0.9559 0.2005 0.9359 9

Framework versions

  • Transformers 4.29.2
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
65
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.