Qt15Classic_Unbalance
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0937
- Train Accuracy: 0.9686
- Validation Loss: 0.2791
- Validation Accuracy: 0.9424
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': 0.001, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.2526 | 0.9286 | 0.1931 | 0.9505 | 0 |
0.2277 | 0.9367 | 0.1823 | 0.9505 | 1 |
0.2120 | 0.9367 | 0.2099 | 0.9505 | 2 |
0.1642 | 0.9432 | 0.2405 | 0.9497 | 3 |
0.0937 | 0.9686 | 0.2791 | 0.9424 | 4 |
Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 62
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.