Hyperledger10ALBERT_Unbalance
This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.2119
- Train Accuracy: 0.9222
- Validation Loss: 0.4662
- Validation Accuracy: 0.8278
- Epoch: 5
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': 0.001, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.3679 | 0.8765 | 0.3703 | 0.8600 | 0 |
0.3423 | 0.8834 | 0.3732 | 0.8600 | 1 |
0.3296 | 0.8841 | 0.3646 | 0.8600 | 2 |
0.3009 | 0.8824 | 0.3789 | 0.8548 | 3 |
0.2480 | 0.9038 | 0.4060 | 0.8039 | 4 |
0.2119 | 0.9222 | 0.4662 | 0.8278 | 5 |
Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 64
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.