English

Quantized Spike-driven Transformer (ICLR25)

Xuerui Qiu, Malu Zhang, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu,Yimeng Shan,Yang Yang, Haizhou Li

University of Electronic Science and Technology of China

Institute of Automation, Chinese Academy of Sciences

:rocket: :rocket: :rocket: News:

  • Jan. 24, 2025: Release the code for training and testing.

Abstract

Spiking neural networks (SNNs) are emerging as a promising energy-efficient alternative to traditional artificial neural networks (ANNs) due to their spike-driven paradigm. However, recent research in the SNN domain has mainly focused on enhancing accuracy by designing large-scale Transformer structures, which typically rely on substantial computational resources, limiting their deployment on resource-constrained devices. To overcome this challenge, we propose a quantized spike-driven Transformer baseline (QSD-Transformer), which achieves reduced resource demands by utilizing a low bit-width parameter. Regrettably, the QSD-Transformer often suffers from severe performance degradation. In this paper, we first conduct empirical analysis and find that the bimodal distribution of quantized spike-driven self-attention (Q-SDSA) leads to spike information distortion (SID) during quantization, causing significant performance degradation. To mitigate this issue, we take inspiration from mutual information entropy and propose a bi-level optimization strategy to rectify the information distribution in Q-SDSA. Specifically, at the lower level, we introduce an information-enhanced LIF to rectify the information distribution in Q-SDSA. At the upper level, we propose a fine-grained distillation scheme for the QSD-Transformer to align the distribution in Q-SDSA with that in the counterpart ANN. By integrating the bi-level optimization strategy, the QSD-Transformer can attain enhanced energy efficiency without sacrificing its high-performance advantage. We validate the QSD-Transformer on various visual tasks, and experimental results indicate that our method achieves state-of-the-art results in the SNN domain. For instance, when compared to the prior SNN benchmark on ImageNet, the QSD-Transformer achieves 80.3% top-1 accuracy, accompanied by significant reductions of 6.0x and 8.1x in power consumption and model size, respectively.

Results

In this paper, we first introduce the lightweight spike-driven transformer, namely the QSDTransformer, which quantifies the weights from 32-bit to low-bit. By employing both low-bit weights and 1-bit spike activities, QSD-Transformer has demonstrated significant energy efficiency. Despite exhibiting efficiency benefits, the QSD-Transformer suffers from performance degradation. We reveal that this is attributed to the SID problem and propose a bi-level optimization strategy to solve this challenge. At the lower level, we propose the IE-LIF neuron, which generates multi-bit spikes in training while maintaining spike-driven behavior during inference. At the upper level, we introduce the FGD scheme, which optimizes attention distribution between the Q-SDSA and its ANN counterpart. Extensive experiments show that our method achieves state-of-the-art results in both performance and efficiency on various vision tasks, paving the way for the practical deployment of spike-based Transformers in resource-limited platforms.

Contact Information

If you find this repository useful, please consider giving a star ⭐ and citation.

@inproceedings{qiu2025quantized,
              title={Quantized Spike-driven Transformer},
              author={Xuerui Qiu and Jieyuan Zhang and Wenjie Wei and Honglin Cao and Junsheng Guo and Rui-Jie Zhu and Yimeng Shan and Yang Yang and Malu Zhang and Haizhou Li},
              booktitle={The Thirteenth International Conference on Learning Representations},
              year={2025},
              url={https://openreview.net/forum?id=5J9B7Sb8rO}
}

For help or issues using this git, please submit a GitHub issue.

For other communications related to this git, please contact [email protected].

Acknowledgement

The object detection and semantic segmentation parts are based on MMDetection and MMSegmentation respectively. Thanks for their wonderful work.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Datasets used to train Xuerui123/QSD_Transformer