flan-t5-large-Imagine-WQ

This model is a fine-tuned version of google/flan-t5-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Gen Len: 509.77
  • Loss: 3.4156
  • Rouge1: 20.6216
  • Rouge2: 4.1953
  • Rougel: 16.091
  • Rougelsum: 17.4067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.08
  • num_epochs: 5

Training results

Training Loss Epoch Step Gen Len Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 218 508.68 3.5702 16.525 3.2484 14.5949 13.3919
No log 2.0 436 509.62 3.5013 17.6208 3.7153 14.7229 14.9556
No log 3.0 654 509.9767 3.4592 19.4782 3.9388 15.7853 16.3468
No log 4.0 872 509.8233 3.4337 20.8148 4.287 16.3887 17.3557
No log 5.0 1090 509.77 3.4156 20.6216 4.1953 16.091 17.4067

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Xnhyacinth/flan-t5-large-Imagine-WQ

Finetuned
(109)
this model